
1

Chapel HyperGraph Library (CHGL)
Louis Jenkins∗, Tanveer Bhuiyan†, Sarah Harun†, Christopher Lightsey†, David Mentgen†,

Sinan Aksoy∗, Timothy Stavenger∗ Marcin Zalewski∗, Hugh Medal†, and Cliff Joslyn∗

louis.jenkins@pnnl.gov, tb2038@msstate.edu, sh2364@msstate.edu, chrisl@dasi.msstate.edu, dam530@msstate.edu,
sinan.aksoy@pnnl.gov, timothy.stavenger@pnnl.gov, marcin.zalewski@pnnl.gov, hmedal@ise.msstate.edu, cliff.joslyn@pnnl.gov

∗ Pacific Northwest National Laboratory, Seattle, Washington, USA.
† Mississippi State University, Mississippi State, Mississippi, USA.

Abstract—We present the Chapel Hpergraph Library (CHGL),
a library for hypergraph computation in the emerging Chapel
language. Hypergraphs generalize graphs, where a hypergraph
edge can connect any number of vertices. Thus, hypergraphs
capture high-order, high-dimensional interactions between mul-
tiple entities that are not directly expressible in graphs. CHGL
is designed to provide HPC-class computation with high-level
abstractions and modern language support for parallel comput-
ing on shared memory and distributed memory systems. In this
paper we describe the design of CHGL, including first principles,
data structures, and algorithms, and we present preliminary
performance results based on a graph generation use case. We
also discuss ongoing work of codesign with Chapel, which is
currently centered on improving performance.

I. INTRODUCTION AND BACKGROUND

Many problems in data analytics involve rich interactions
amongst multiple entities, for which graph representations are
commonly used. High order (high dimensional) interactions,
which abound in cyber and social networks, can only be
represented in graphs as highly inefficiently coded, “reified”
labeled subgraphs. Lacking multi-dimensional relations, it is
hard to address questions of “community interaction” in graphs:
e.g., how is a collection of entities A connected to another
collection B through chains of other communities; where does
a particular community stand in relation to other communities
in its neighborhood?

Hypergraphs [1] are an extension of the concept of graphs
that addresses such concerns. Hypergraphs generalize graphs
by allowing edges to connect any number of vertices. More
concretely, an undirected hypergraph H is a pair H = (V,E)
where V is a set of vertices as in a graph, and E ⊆ 2V \ {∅}
is a set of hyperedges.

Hyperedges capture multi-dimensional relations explicitly,
allowing more direct reasoning and algorithms. For example,
Fig. 1 shows an author-paper hyper-network involving four
authors and four papers. The hypergraph directly represents
both the two-author papers as graph edges (2-hyperedges),
but also the three-authored paper as a 3-hyperedge (solid
triangle). All graphs are hypergraphs, but the proper hypergraph
is necessary in this case, as e.g. the {B,D} 2-edge can only
indicate that Bob and Diane were on some paper, but not
that that paper also involved Carl. Hypergraphs are directly
coded by their incidence matrices (as shown), which, unlike
graph incidence matrices, may have other than two entries per
column. They are also broadly equivalent to a bipartite graph
with |E|+ |V | vertices, as shown.

While hypergraphs offer mathematical clarity and support
reasoning, they have not received much attention in the software

(a) Hypergraph

 X Y Z Q

A x x

B x x x

C x x x

D x

(b) Incidence matrix
(c) Bipar-
tite graph

Fig. 1: Hypergraph, incidence matrix, and bipartite graph
representations of the same data.

engineering community at large, and especially in the HPC
community. There is a distinct lack of HPC publications and
implementations for hypergraphs, as compared to the abundance
of work on graphs. In this paper, we introduce our early
efforts to address that gap in a modern HPC environment.
Specifically, we introduce the Chapel Hypergraph Library
(CHGL), a library for hypergraph computation in the emerging
Chapel programming language [2], [3].

CHGL provides a highly abstract interface for implementa-
tion of hypergraph algorithms. Currently, the primary function-
ality implemented using CHGL data structures is hypergraph
generation. Hypergraph generation serves far-ranging purposes
across scientific disciplines. In particular, generative graph
models are used for benchmarking, provide null models for
algorithm testing, and can create surrogate graphs to protect
anonymity of private or restricted data. CHGL provides the
Erdős-Rényi, the Chung-Lu (CL) [4], and the Block Two-Level
Erdős-Rényi (BTER) [5], [6] generation models.

We chose to implement CHGL in Chapel, both to leverage
it’s unique features but also to test their applicability in a
data-driven, fine-grained application that is notoriously difficult
to implement efficiently. Chapel provides high-level built-in
concepts and mechanisms for data parallelism, task parallelism,
and concurrency. One of the most important features for CHGL
are highly abstract array data structure with generic views on
data through domains, which provide a common interface to a
variety of local and global data layouts, including dense, sparse,
and associative data with library-provided distributions such
as block or cyclic. Majority of the low-level aspects of that
generic view can be controlled by user-defined implementations
(in Chapel) in the spirit of multiresolution philosophy, where
low-level details can be added to an abstract implementation to
improve performance. Other important features CHGL relies on
are the task and data parallelism mechanisms, such as forall

loops, synchronous and asynchronous tasks (begin and

2

cobegin statements), and locality control through Chapel’s
data-driven on clauses and locale framework. Finally, Chapel
also provides a set of modern basic programming features
such as type inferencing and generic programming. In section
Section II, we describe our experience in using Chapel features
to design and implement abstract interfaces, highlighting
the usefulness of the Chapel array abstractions. In section
Section IV, we evaluate the performance of our code, and in
Section V we discuss the ongoing work in CHGL and the
codesign and interaction with Chapel.

While CHGL provides the basic data structures and al-
gorithms for hypergraphs, the driving application in this
paper is graph generation, which is discussed in Section III.
Graph generation serves far-ranging purposes across scientific
disciplines. In particular, generative graph models are used for
benchmarking, provide null models for algorithm testing, and
can create surrogate graphs to protect anonymity of private
or restricted data. Throughout these applications, it is ideal to
have generators that are easily tunable, require compact inputs,
produce graphs with varied structural properties encountered
in real data, and—perhaps most importantly—are scalable.

We conduct a scalability study of three hypergraph gener-
ators implemented in CHGL: hypergraph Erdős Rényi (ER),
hypergraph Chung-Lu (CL) [4], and the recently introduced
hypergraph version of the Block Two-Level Erdős Rényi
(BTER) model [6]. These models take compact inputs that
can be easily sampled from real data or generated artificially,
and can be easily tuned to output hypergraph data possessing a
wide range of properties, at scale. Furthermore, taken as a suite,
each model provides successively more control over hypergraph
structure than the previous, providing the flexibility to choose
different tiers of structural nuance for the generated data. We
use hypergraph statistics implemented in CHGL to evaluate
the generative models, providing an end-to-end generation and
evaluation framework.

II. CHGL DESIGN AND IMPLEMENTATION

The overall goal of CHGL is to provide a high-level modern
library of functionality for hypergraphs with HPC performance.
CHGL’s primary design goals are the following:
• Genericity: CHGL is based on the principles of generic pro-

gramming [7], providing well-defined interfaces independent
of particular data structures and generic algorithms defined
in terms of these interfaces. Genericity supports interfaces
that are minimal, durable, and designed to cover wide classes
of data structures, and it provides reusable algorithms that
can be written once for many input types.

• Performance: CHGL is specifically intended to provide
strong performance in modern HPC environments, from
multi-core to distributed-memory settings. Specifically,
CHGL relies on Chapel abstractions for performance, and the
purpose of our effort is in part to explore, test, and contribute
to these abstractions in the context of our applications.

• Usability: While genericity and simplicity are fundamental,
CHGL is also easy to use. Our philosophy is to provide
multiple interfaces where the simplest interfaces can be used
by beginners, which then can be extended gradually by
providing more parameters.

1 class HyperGraph {
2 // member functions
3 iter vertices() : vDescType;
4 iter edges() : eDescType;
5 proc numVertices : int(64);
6 proc numEdges : int(64);
7 iter forEachVertexDegree() : (vDescType, int(64));
8 iter forEachEdgeDegree() : (eDescType, int(64));
9 proc vertexDegrees();

10 proc edgeDegrees();
11 proc addInclusion(vertex : vDescType,
12 edge : eDescType);
13 proc hasInclusion(vertex : vDescType,
14 edge : eDescType);
15 proc inclusions(vertex : vDescType) : eDescType;
16 proc inclusions(edge : eDescType) : vDescType;
17 proc numNeighbors(v : vDescType) : int(64);
18 proc numNeighbors(e : eDescType) : int(64);
19 proc getVertex(v : vDescType) : MetaData;
20 proc getEdge(e : eDescType) : MetaData;
21 ...

Fig. 3: Part of the interface of the HyperGraph CHGL class.

AdjListHyperGraph

…
…

Ve
rti

ce
s

Ed
ge

s

…

…

…

…

…

…

Ed
ge

 in
cl

us
io

ns
Ve

rte
x

in
cl

us
io

ns

Fig. 2: Adjacency list hyper-
graph data structure.

The three principles are
synergistic. Chapel aims to
support both performance
and abstraction through
its easy-to-use generic
programming and compile-
time metaprogramming
mechanisms. CHGL
exploits these mechanisms
with intention of pushing
the limits of Chapel, feeding
requirements and feature
requests back to the Chapel
language. In that sense,
CHGL is meant to both
utilize Chapel for its benefit,
and also to exist in codesign
with Chapel, improving it in the process. In this section, we
first provide simple examples of CHGL uses, and then we
briefly discuss more advanced elements of CHGL design and
implementation.

In CHGL, the creation of hypergraphs is simple and intuitive.
For example, creating a medium-sized hypergraph that is
cyclicly distributed over a small subset of the locales, or
compute nodes in the cluster, relies on the Chapel framework
for distributions:

1 const numVertices = 1024 * 1024;
2 const numEdges = 2048 * 1024;
3 const cyclicDom = new Cyclic(startIdx = 1,
4 targetLocales = Locales[4..8]);
5 var graph = new HyperGraph(numVertices, numEdges,
6 cyclicDom);

CHGL provides a generic interface that relies on clearly
specified hypergraph interfaces that span an open-ended class
of hypergraph types that model the interface. Figure 3 lists a
portion of the generic hyper graph interface in CHGL (in
a simplified form). For example, a modifiable hypergraph

3

provides a method for including vertices into edges (remember,
edges in hypergraphs can contain any number of vertices),
using the method addInclusion , and vertex degrees of any
graph can be iterated over (using Chapel iterators) using the
forEachVertexDegree method. Figure 2 illustrates the layout

of CHGL’s main hypergraph data structure, the adjacency list
hypergraph AdjListHyperGraph . This data structure consists
of two outer Chapel arrays, which may be distributed, for
vertices and edges and of inner non-distributed arrays for every
vertex and edge inclusions. Every inclusion is stored in two
directions, both at the included vertex and at the including edge,
resulting in storage of the hypergraph and its dual. Thanks
to Chapel array capabilities, this data structure supports both
static and dynamically growing hypergraphs. Currently, this
is the only hypergraph data structure available in CHGL, but
it is versatile and widely applicable due to the flexibility of
Chapel arrays (e.g., both local and distributed hypergraphs can
be represented, different layouts can be used for data, etc.).

A simple task to perform on the graph constructed above is
to extract vertex degrees:

1 var vertexDegrees : [graph.verticesDomain()] int;
2 forall (degree, vertex) in zip(vertexDegrees,
3 graph.getVertices()) {
4 degree = graph.numNeighbors(vertex);
5 }
6 var totalVertexDegrees = + reduce vertexDegrees;

Even though the graph is distributed cyclically between
different locales of a distributed machine, the vertices can be
extracted with a single forall loop, which can then be used
to query more information from the graph. By using the zip

operator, we get to request that more than one data source,
providing they are of the same size and shape, have their
yielded results tupled together. As the vertexDegrees array
shares the same domain as the hypergraph’s vertices, we can
obtain both a reference and the descriptor for the respective
vertex. Note that the array of vertex degrees gets reduced in a
single step, using the Chapel reduce syntax. If only finding the
sum of all vertex degrees is desired, a more efficient variant
of this algorithm can be produced via Chapel’s reduce-intents:

1 var totalVertexDegrees = 0;
2 forall vertex in graph.vertices() with
3 (+ reduce totalVertexDegrees) {
4 totalVertexDegrees += graph.numNeighbors(vertex);
5 }

In the above snippet, Chapel is informed that
totalVertexDegrees is intended as a reduction using

the plus operation. Given this hint, Chapel can optimize the
global reduction in the same way an advanced programmer
could using low-level distributed programming constructs.

Each of the interface functions are error-friendly in that by
using Chapel’s rich support for generics and overloading of
functions and methods, the library uses the compilerError

and compilerWarning to provide user-friendly error messages.
For example:

1 // 5% probability
2 const p = 0.05;
3 // p * |V| * |E|
4 const numInclusions = graph.numVertices
5 * graph.numEdges * p;
6 // Spawn a task on each other locale
7 coforall loc in Locales do on loc {
8 var rng : makeRandomStream(real);
9 forall 1 .. numInclusions / numLocales {

10 var vertex =
11 rng.getNext(0, graph.numVertices() - 1);
12 var edge = rng.getNext(0, graph.numEdges() - 1)
13 graph.addInclusion(vertex, edge);
14 }
15 }

Fig. 4: Simplified Erdős-Rényi algorithm.

1 inline proc numNeighbors(other) {
2 compilerError("'numNeighbors(", other.type
3 : string, "') is not supported...\n",
4 "Require argument of type ", vDescType
5 : string, " or ", eDescType : string);
6 }

By making the function inline, the compiler error message will
show the location that the user has provided the bad argument.
This type of compile-time error checking and custom error
messages makes it easy for the user to learn from their mistakes,
and even better, where and how to fix it.

In Fig. 4, we show a simplified implementation of the Erdős
Rényi CHGL algorithm (see Section III). In this example,
probability p is the probability that there is an inclusion of a
vertex in an edge. Multiplying p by the number of vertices
and edges gives the expected number of inclusions to be added.
The inclusions can be added in an embarassingly parallel way.
However, this straightforward implementation needs further
steps to become efficient (see Section V).

III. USE CASE: GRAPH GENERATION

In this work, we choose graph generation for our use case.
Given the utility of graph generators, it is unsurprising there
are plethora of models and an extensive surrounding literature.
In addition to the Stochastic Kronecker Model (SKG) used
for the Graph500 supercomputer benchmark [8], the Chung-
Lu (CL) [4] and Block Two-Level Erdős Rényi (BTER) [5]
models have also received attention for having scalable, parallel
implementations [9], [10] and producing graphs with realistic
heavy-tailed vertex degree distributions [11], and, in the case
of BTER, community structure. In CHGL, we implement three
generators: hypergraph Erdős Rényi, hypergraph Chung-Lu,
and recently introduced hypergraph BTER model [6]. Below,
we briefly describe each of these models:
• Hypergraph Erdős-Rényi (ER). The user specifies three

scalar parameters: the number of vertices and hyperedges
and the vertex-hyperedge inclusion probability, p, where
for each possible vertex-hyperedge pair, the probability that
the vertex is assigned to that hyperedge is p. In practice,
however, it is too computationally costly to consider all
possible inclusions, and several efficient alternatives [12],

4

[13] have been proposed. In CHGL, we feature both this
“naive", as well as a “fast ER” generator in which the desired
number of vertex-hyperedge inclusions are determined by
sampling the vertices and hyperedges of each inclusion
uniformly at random, with replacement. To control for
possible duplicate inclusions, CHGL’s fast ER generator
also includes an optional “coupon-collectors adjustment"
(see [10]) that ensures, in expectation, the desired number
of unique inclusions are realized in the output graph.

• Hypergraph Chung-Lu (CL). The user specifies a desired
vertex degree and edge cardinality sequence. In this model,
which is generalization of ER, the probability a vertex
belongs to an edge is proportional to the product of their
desired degree and edge cardinality; consequently, each
vertex and hyperedge achieves these user-specified values
in expectation. As with ER, we include a fast hypergraph
CL implementation, as described in [6], in which the vertex
and hyperedge of each inclusion is chosen according to a
weighted random sampling with replacement.

• Hypergraph Block-Two Level Erdős-Rényi (BTER). In
addition to the same parameters as Chung-Lu, the user
also specifies desired metamorphosis coefficients for the
hypergraph. As introduced and explained in [6], metamor-
phosis coefficients are numerical measures of hypergraph
community structure shown to be prevalent in real data.
The BTER algorithm is designed to output a graph whose
degree distributions and metamorphosis coefficients both
approximately match the inputs. As the details of the BTER
algorithm are complicated, the interested reader may refer
to [6] for a more formal description.

Using CHGL, we generated instances of hypergraphs for
each of the above models by extracting each model’s inputs
from real hypergraph data. In particular, we used the well-
known “condMat" [14] author-paper network based on preprints
posted in the Condensed Matter section of the arXiv e-
Print repository. This dataset contains 16,726 authors, 22,016
preprints, and 58,595 author-paper inclusions, and exhibits
structurally rich properties, such as heavy tailed degree distri-
butions, and tight-knit community structure.

Figure 5 plots some of CHGL’s hypergraph analytics, which
we use to compare structural properties of instances of CHGL’s
generated hypergraphs with those of the real condMat dataset.
These plots serve to verify the CHGL implementation generates
hypergraphs exhibiting key properties consistent with the
abstract ER, CL, and BTER models, and also highlight the
breadth of structural nuance achievable through these generators.
For instance, while the ER graph possesses about same average
edge cardinality and vertex degree as condMat, Fig. 5 (left)
shows that the degree distributions are dissimilar, a known
shortcoming of ER. In contexts where accurately modeling
vertex degree and edge cardinality distributions is important,
CL is a more appropriate generator, as confirmed by the closer
match in Fig. 5. Nonetheless, Figure 5 (right) shows that
CL is not able to reproduce condMat’s community structure,
as measured by metamorphosis coefficients. However, the
same plot shows that BTER generator offers more accurate
community structure, which affords the user the option to add

100 101 102
100

101

102

103

104

100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 5: Structural comparison of ER, CL, and BTER output
hypergraphs vs the original condMat dataset.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 4 8 16 32

T
im
e

(s
e
c
o
n
d
s
)

Threads

Chung Lu (SMP)

SMP

(a) Chung Lu (SMP) - 100K Ver-
tices, 200K Edges, 841,088 Inclu-
sions

 0

 50

 100

 150

 200

 250

 1 2 4 8 16 32

T
im
e

(s
e
c
o
n
d
s
)

Threads

Erdos Renyi (SMP)

SMP

(b) Erdős-Rényi (SMP) - 100K
Vertices, 100K Edges, 1% Prob-
ability

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16 32 64

T
im
e

(s
e
c
o
n
d
s
)

Locales

Chung Lu (Distributed)

Distributed

(c) Chung Lu (Distributed) - 1M
Vertices, 2M Edges, 9,940,947 In-
clusions

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64

T
im
e

(s
e
c
o
n
d
s
)

Locales

Erdos Renyi (Distributed)

Distributed

(d) Erdos Renyi (Distributed) -
100K Vertices, 100K Edges, 1%
Probability

Fig. 6: SMP and distributed execution weak scaling for the
ER and CL graph generation algorithhms.

another layer of realism to the generated data. In Section IV, we
present performance scaling experiments for these generators.

IV. EVALUATION

Performance benchmarks are performed on Intel Broadwell
compute nodes of a Cray-XC50 cluster. For the communication
layer, which is the run-time abstraction layer responsible for
sending, receiving, and handling active messages, we use
Cray’s uGNI with 16MB hugepages; we utilize the uGNI
communication layer over the GASNet communication layer
as it is specialized for Cray’s hardware. For the tasking layer,
which is the abstraction layer responsible for the creation,
scheduling, and management of tasks, which are coroutines
that are multiplexed on top of threads, we use qthreads. For
the memory management layer, the abstraction layer that is
responsible for handling memory management, we use jemalloc.
The benchmarks have been tested using Chapel pre-release
version 1.18.0, hash 55106c1d2c.

We present a set of benchmarks for the hypergraph generation
algorithms: Erdős-Rényi, Chung-Lu, and Block Two-level

5

Erdős-Rényi (BTER). In each set we provide a brief high-level
description of the benchmark, and we display and analyze both
shared-memory and distributed performance in all sets except
BTER, which is still in its prototype stage and only performs
well in a shared-memory environment. In the shared-memory
benchmarks, we allocate a single compute node with cores
that are a power of 2 up to 32 cores, and so the performance
results are be presented in a logarithmic base-2 scale.1 For
distributed memory, we allocate compute nodes, each with 44
cores, by powers of 2 up to 64 nodes, and so the performance
results are also be presented in a logarithmic base-2 scale. In
both shared-memory and distributed benchmarks we compile
the benchmarks with the –fast flag, which causes the Chapel
compiler to perform all optimization on the Chapel source
code, turn off any and all safety run-time checks such as out-of-
bounds checking, and runs the generated C code, which Chapel
gets compiled down to, with the highest optimization settings
for the C compiler used. In the shared-memory benchmarks,
we compile with the –local flag so that the Chapel compiler
never injects run-time checks for whether a memory access is
remote before accessing it, which occurs when the compiler is
unable to determine such information at compile-time.

A. Erdős-Rényi (ER)

We begin by spawning a task on each logical core on each
locale, where each task then computes a random vertex and
hyperedge to create an inclusion for. Computing the random
vertex and edge is done without involving communication with
other tasks or locales, but creating the inclusion may involve
communication if either the vertex or edge is hosted in remote
memory. Random sampling is performed by using a task-local
random number generator and obtaining a random number
within a valid range for vertices and hyperedges. The graph
being generated contains 100K vertices and 100K hyperedges,
and the probability of there being an edge created between any
pair of vertex and hyperedge is 1%, hence a total of 100M
edges are generated.

In the shared-memory benchmark which is shown in Fig. 6b,
ER scales in a linear fashion as we increase the number of cores
by a power of two, as would be expected. In the distributed-
memory benchmark which is shown in Fig. 6d, ER shows a
rather large increase in overall execution time at 2 locales,
which is due to introducing the large but constant overhead of
adding communication to the program. As the random sampling
of vertices and edges are entirely local and relatively fast, the
overhead is more noticeable here. Thanks to aggregation, the
execution time decreases as we add more than 2 locales and
we pass single-locale execution starting at 8 locales, and at 64
locales the performance is approximately 8x faster.

B. Chung-Lu (CL)

We begin by spawning a task on each logical core on each
locale, where each task then computes a random vertex and
hyperedge to create an inclusion for. However unlike ER,

1It has been observed that using a non power of 2 does not show much of
any variation in performance.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 8 16 32

T
im
e

(s
e
c
o
n
d
s
)

Threads

BTER (SMP)

SMP

(a) Block Two-Level Erdos Renyi
(SMP) - CondMat x5

0 1 2 3
log(Node Degree)

0

2

4

6

8

lo
g(

Fr
eq

ue
nc

y)

Generated
BTER

(b) Quality of BTER generator.

CL performs a weighted random sampling from a table that
is formed by taking the prefix sum (scan in Chapel) of
the normalized desired vertex degree and edge cardinality
sequences. The current algorithm is naive and is heavy-weight,
effectively being a linear operation per random sample. Each
task still computes the weighted random samples without
communication; the random number is generated using a task-
local random number generation as it does in ER, and the
probability table is duplicated on each locale, hence only
datasets that can fit on an individual locale can be sampled. Both
the shared-memory and the distributed benchmarks sample the
same LiveJournal[15] dataset, but we sample 100K vertices and
200K hyperedges to create 841,088 edges for shared-memory,
and 1M vertices and 2M hyperedges to create 9,940,947 edges
for distributed.

In the shared-memory benchmark which is shown in Fig. 6a,
CL scales linearly as expected. In the distributed memory
benchmark, which is shown in Fig. 6c, CL scales linearly
including at two locales due to the overhead of the naive
weighted random sampling being significantly higher than the
cost of communication.

C. Block Two-Level Erdős-Rényi (BTER)

We begin by sorting the desired vertex degree sequence and
edge cardinality sequences in parallel, then scan both for the
index of the first vertex and edge that have a desired degree
or cardinality greater than 1. Then we compute affinity block
information from metamorphosis coefficients and degree of the
vertex and edge, and then create the affinity block using ER
on isolated sub-hypergraphs using this information. After all
affinity blocks are created, we set the new desired vertex degree
and edge cardinality sequences as the difference between the
desired final degrees and the actual degrees generated by ER on
affinity blocks. Afterwards, we use CL to create the remaining
inclusions. We use the CondMat dataset, but scale it up 5 times
by appending the same vertex degree and edge cardinality
sequences concatenating it with itself.

In this shared-memory benchmark, which is shown in Fig. 7a,
BTER scales linearly just as ER and CL does, which is expected
as it is built on top of them. Furthermore, in Fig. 7b we compare
the graph generated by our BTER generator (“BTER”) with
a known, high-quality generator [6] (“Generated”). The plot
compares degree distribution between the two generators. The
distribution produced by our generator closely matches the
high-quality generator.

6

V. DISCUSSION

In Fig. 4, we can not only elegantly obtain and query
information about the graph, but we can also easily dispatch
distributed computations by utilizing Chapel’s language con-
structs. However, just because it is easy to write correct code
does not mean that it is easy to write code that performs well. In
particular, in Chapel, classes instances are allocated on the heap,
and it should be noted that updates are not propagated globally,
nor do class instances migrate from one locale to another.
That is to say, the class instance is owned by the locale it was
allocated on, and any access from any other locale is inherently
remote, hence there is a hefty performance penalty from all of
the implicit PUT/GET operations. To counteract this, Chapel
implements a process called ’privatization’ that allocates a local
copy of the class instance on each locale, where all accesses
can be redirected toward their local copy. While this process
was originally intended for arrays and distributions, we exploit
this process to ensure that our data structure scales. By making
use of Chapel’s forwards construct, we can forward any and
all access from the hypergraph class to its respective privatized
class instance, just like for Chapel’s arrays. As Chapel’s ’forall’
loops pass data by reference by default, arrays have a specific
compiler optimization called ’remote-value forwarding’ where
all usage of an array is forwarded to its privatized instance;
since this is currently hard-coded for Chapel’s arrays and
domains, CHGL currently requires users to emulate this by
declaring the forall-intent of the graph as in .

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16 32 64

T
im
e

(s
e
c
o
n
d
s
)

Locales

Erdos Renyi (Distributed Variants)

Privatization + Aggregation
Privatization

Naive

Fig. 8: Optimized ER perfor-
mance.

By making use of privati-
zation, we can then make use
of aggregation, where we
keep relatively-small ’desti-
nation buffers’, where we
aggregate pairs of vertices
and edges, for each locale.
This significantly speeds
up performance by elimi-
nating communication that
would occur on each call to

addInclusion , and instead perform them in one big bulk
task, via addInclusionBuffered which requires a call to
flushBuffers when finished. Usage of aggregation in an

efficient ER can be seen below, and Fig. 8 shows the difference
in performance between three levels of optimization of ER.

1 // 5% probability
2 const p = 0.05;
3 // p * |V| * |E|
4 const numInclusions = graph.numVertices *
5 graph.numEdges * p;
6 // Spawn a task on each other locale
7 coforall loc in Locales with (in graph) do on loc {
8 var rng : makeRandomStream(real);
9 forall 1 .. numInclusions / numLocales {

10 var vertex = rng.getNext(0,
11 graph.numVertices - 1);
12 var edge = rng.getNext(0, graph.numEdges - 1)
13 // Aggregates (vertex, edge) pairs
14 graph.addInclusionBuffered(vertex, edge);
15 }
16 }
17 // Flushes pending aggregation (vertex, edge) pairs
18 graph.flushBuffers();

In this prototype, the types of vertex and edge are left out
for the Chapel compiler to figure out from the call context. The
only requirement is that the type of vertex is convertible to
the vDescType and the type of edge to eDescType , where
both descriptor types are provided as associated types by every
hypergraph. Conversions from an integral type to a vDescType

or eDescType is performed with an implicit bounds check
unless the user specifies the –fast flag.

VI. CONCLUSIONS AND FUTURE WORK

We preset CHGL, a Chapel library for hypergraph com-
putation. Initially, the main driving application for CHGL
is hypergraph generation using the Erdős-Rényi, Chung-Lu,
and BTER models. CHGL strives to provide highly abstract
interfaces in the spirit of generic programming and to leverage
Chapel for modern parallel programming constructs, with the
guiding principle of achieving HPC-class performance.

Currently, CHGL is a prototype. Our efforts are concentrated
on developing the abstract interfaces, adding generic algorithms,
and on improving performance. We are actively interacting with
the Chapel community reporting problems, requesting features,
and investigating design paradigms. We plan to release CHGL
as open-source software before HPEC 2018.

REFERENCES

[1] C. Berge, Hypergraphs: Combinatorics of Finite Sets. Elsevier, 1989.
[2] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability

and the Chapel Language,” Int. J. High Perform. Comput. Appl., vol. 21,
no. 3, pp. 291–312, Aug. 2007.

[3] “The chapel parallel programming language,” https://chapel-lang.org/,
Jul. 2018.

[4] W. Aiello, F. Chung, and L. Lu, “A Random Graph Model for Power
Law Graphs,” Experimental Mathematics, vol. 10, no. 1, pp. 53–66,
2001.

[5] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community Structure and Scale-
Free Collections of Erdős-Rényi Graphs,” Physical Review E, vol. 85,
no. 5, may 2012.

[6] S. G. Aksoy, T. G. Kolda, and A. Pinar, “Measuring and Modeling
Bipartite Graphs With Community Structure,” Journal of Complex
Networks, vol. 5, no. 4, pp. 581–603, mar 2017.

[7] D. Musser and A. Stepanov, “Generic Programming,” in Proc. Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC), ser.
LNCS, vol. 358. Springer, 1988, pp. 13–25.

[8] “Graph 500 steering committee,” specification available at
https://graph500.org/, 2018.

[9] M. Alam and M. Khan, “Parallel algorithms for generating random
networks with given degree sequences,” International Journal of Parallel
Programming, vol. 45, no. 1, pp. 109–127, oct 2015.

[10] T. G. Kolda, A. Pinar, T. Plantenga, and C. Seshadhri, “A scalable
generative graph model with community structure,” SIAM Journal on
Scientific Computing, vol. 36, no. 5, pp. C424–C452, jan 2014.

[11] A. Pinar, C. Seshadhri, and T. G. Kolda, “The similarity between
stochastic kronecker and chung-lu graph models,” in Proceedings of
the 2012 SIAM International Conference on Data Mining. Society for
Industrial and Applied Mathematics, apr 2012, pp. 1071–1082.

[12] J. C. Miller and A. Hagberg, “Efficient generation of networks with given
expected degrees,” in Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 115–126.

[13] M. Winlaw, H. DeSterck, and G. Sanders, “An in-depth analysis of the
chung-lu model,” Lawrence Livermore National Lab.(LLNL), Livermore,
CA (United States), Tech. Rep., 2015.

[14] M. E. J. Newman, “The structure of scientific collaboration networks,”
Proc. Natl. Acad. Sci., vol. 98, no. 2, pp. 404–409, jan 2001.

[15] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–123,
2009.

