
High Performance Hypergraph Analytics of
Domain Name System Relationships

Cliff A Joslyn
Pacific Northwest National Laboratory

Seattle, WA, USA
Cliff.Joslyn@pnnl.gov

Sinan Aksoy
Pacific Northwest National Laboratory

Richland, WA, USA
Sinan.Aksoy@pnnl.gov

Dustin Arendt
Pacific Northwest National Laboratory

Richland, WA, USA
Dustin.Arendt@pnnl.gov

Louis Jenkins
University of Rochester

Rochester, NY, USA
Louis.Jenkins@rochester.edu

Brenda Praggastis
Pacific Northwest National Laboratory

Seattle, WA, USA
Brenda.Praggastis@pnnl.gov

Emilie Purvine
Pacific Northwest National Laboratory

Seattle, WA, USA
Emilie.Purvine@pnnl.gov

Marcin Zalewski
Pacific Northwest National Laboratory

Seattle, WA, USA
Marcin.Zalewski@pnnl.gov

Abstract—We report on the use of novel mathematical methods
in hypergraph analytics over a large quantity of DNS data. Hy-
pergraphs generalize graphs, as used in network science, to better
model complex multiway relations in cyber data. Specifically,
casting DNS data from Georgia Tech’s ActiveDNS repository as
hypergraphs allows us to fully represent the interactions between
collections of domains and IP addresses. To facilitate large-scale
analytics, we fielded an analytical pipeline of two capabilities.
HyperNetX (HNX) is a Python package for the exploration
and visualization of hypergraphs, acting as a frontend. For
the backend, the Chapel HyperGraph Library (CHGL) is a
library for high performance hypergraph analytics written in
the exascale programming language Chapel. CHGL was used
to process gigascale DNS data, performing compute-intensive
calculations for data reduction and segmentation. Identified
portions are then sent to HNX for both exploratory analysis
and knowledge discovery targeting known tactics, techniques,
and procedures.

Index Terms—Hypergraphs, DNS, high performance comput-
ing, Chapel.

I. INTRODUCTION

Many problems in data analytics involve rich interactions
amongst multiple entities, for which graph representations are
commonly used. High order (high dimensional) interactions,
which abound in cyber and social networks, can only be
represented in graphs as highly inefficiently coded, “reified”
labeled subgraphs. Lacking multi-dimensional relations, it
is hard to address questions of “community interaction” in
graphs: e.g., how is a collection of entities A connected to
another collection B through chains of other communities?;
where does a particular community stand in relation to other
communities in its neighborhood?

Hypergraphs [2] are generalizations of graphs which al-
low edges to connect any number of vertices. Hypergraph

PNNL-SA-139836

methods are well known in discrete mathematics, and are
closely related to important objects in data science such as
bipartite graphs, set systems, partial orders, finite topologies,
and especially graphs proper, which they directly generalize
(every graph is a 2-uniform hyergraph). In HPC, hypergraph-
partitioning methods help enable parallel matrix computations
[7], and have applications in VLSI [12]. In the network
science literature, researchers have devised several path and
motif-based hypergraph data analytics (albeit fewer than their
graph counterparts), such as in clustering coefficients [14] and
centrality metrics [8].

Complex data commonly analyzed using network science
methods, and especially including cyber data, often contain
multi-way interactions. But while they thus present naturally
as hypergraphs, still hypergraph treatments are very unusual
compared to graph representations of the same data. This
is due at least to the greater mathematical, conceptual, and
computational complexity of hypergraph methods, since as
data objects, hypergraphs scale as O(2n) in the number of
vertices n, as opposed to O(n2) for graphs. In the face of
this, complex data are typically collapsed or are simplified to
graphs to ease analysis.

Our research group is dedicated to facing the challenge of
the complexity of hypergraphs in order to gain the formal
clarity and support for analysis of complex cyber data they
provide. A substantial high-performance computing (HPC)
component is thus necessary, despite hypergraph analytics
not receiving much attention in the software engineering
community at large, and the HPC community in particular. We
thus pursue a two-fold approach to developing our methods:

1) We employ the Chapel Hypergraph Library (CHGL,
https://github.com/pnnl/chgl) [11]), a library for hyper-
graph computation in the emerging Chapel programming

language [5], [6], for HPC hypergraph processing, large
scale analysis, and data segmentation.

2) We explore single hypergraphs or collections
of hypergraphs using HyperNetX (HNX,
https://github.com/pnnl/HyperNetX), a Python library
being developed by PNNL for exploratory data analytics
and visualization of hypergraphs.

In our work, CHGL and HNX are two stages of an analyt-
ical pipeline: CHGL provides a highly abstract interface for
implementation of HPC hypergraph algorithms over large data,
identifying segments and subsets which can then be passed to
HNX for more detailed analysis.

In this paper we first introduce the rudiments of hypergraph
mathematics and hypernetwork science in the context of our
CHGL and HNX capabilities. We then describe the DNS
data set, selections of the ActiveDNS data sets from Georgia
Tech University. We then describe CHGL, before going on
to describe the results of our demonstration analyses. These
include both basic global statistics like degree and edge size
distributions, as well as exploratory and targeted discovery of
small components. The exploratory discovery involves motif
mining and computation of simple hypergraph metrics to
discover outliers. On the other hand, targeted discovery is
motivated by known bad activity. We built a blacklist of IP
addresses and domains that follow a known pattern used by
a global criminal operation as described in a FireEye Threat
Research Blog entry [4].

II. HYPERGRAPH ANALYTICS

An undirected hypergraph is a pair H = 〈V, E〉 with V a
finite, non-empty set of vertices, and E a non-empty multiset
of hyperedges e ∈ E (or just “edges” when clear), where ∀e ∈
E , e ⊆ V . Hypergraphs can be represented in many forms,
two of which are shown in Fig. 1 for a small example H with
V = {1, 2, . . . , 9}, representing |V | = 9 IP addresses.1 On
the left is an Euler diagram showing each of eight hyperedges
A,B, . . . ,H , representing domains, as a “lasso” around its
vertices. On the right is a V × E incidence matrix I , where
a non-null 〈v, e〉 ∈ I cell indicates that v ∈ e for some v ∈
V, e ∈ E .We call each hyperdge e ∈ E an s-edge where s = |e|.
Thus all graphs are hypergraphs, in that all graph edges are
2-edges, for example H = {4, 5}, saying that the domain H
has two IPs 4 and 5. But F = {1, 2, 3, 9} is a 4-edge, with
domain F having those four IPs. This is not representable in a
graph. Where each column of the incidence matrix of a graph
has exactly two cells, those of hypergraphs are unrestricted.

Our research group is pursuing hypergraph analytics as an
analog to graph analytics [13]. While our development is
consistent with others in the literature [8], [15], our notation
and concepts are somewhat distinct. We say that two edges
e, f ∈ E are s-adjacent if |e ∩ f | ≥ s for s ≥ 1. An s-star is
a set of edges F ⊆ E sharing exactly a common intersection
f ⊆ V , with |f | ≥ s, so that ∀ei, ej ∈ F we have ei∩ej = f .

1H can also be represented as a bipartite graph on the disjoint union V tE ,
with each component a distinct part.

Fig. 1: (Left) An Euler diagram of an example hypergraph H.
(Right) Its incidence matrix I .

An s-path is a sequence of edges 〈e0, e1, . . . , en〉 such
that each ei−1, ei are s-adjacent for 1 ≤ i ≤ n; and an
s-component is a maximal collection of edges any pair of
which is connected by an s-path. The s-diameter of an
s-component is the length of its longest shortest s-path.
Comparing again to graphs, graph paths are all 1-paths, and
graph components all 1-components. Our example has two 1-
components (shown obviously), but also four 2-components
(listed edge-wise) {A,F,G,H}, {B,D}, {C} and {E}. It’s
3- and 4-components are each single edges of size larger than
3 or 4 (respectively), and it has no 5 or higher components.

Given a hypergraph H, it is possible to construct smaller
representations which capture important properties:

• Note that in our example, the edges A = F and
B = D, and the vertices 1 = 9 and 7 = 8, are
equivalent, represented as duplicate columns and rows
in I respectively. Collapsing is the process of combining
these and replacing them with a representative, while also
possibly maintaining a multiplicity count to be used for
a weighting. The edges E are hereby transformed from a
multiset to a set.

• Additionally, note that after collapsing, the smaller 1-
component becomes an isolated singleton, effectively a
collection of non-interacting vertices, or a diagonal block
in I . These are especially common in DNS data. Pre-
collapse, an isolated singleton would indicate the normal,
uninteresting behavior in DNS where a single IP is
associated with a single domain, and vice versa. But post-
collapse, they indicate a collection of IPs and domains
which are universally associated only with themselves,
effectively forming a set of domain and IP aliases. In this
work, these are counted and pruned, but in the future they
could be attended to with respect to their multiplicities.

• Finally, note that H ⊂ G is an included edge. Non-
included edges are called toplexes, and not only is the
collection of toplexes much smaller than H, but it is
sufficient to derive some hypergraph information, for
example s-components.

Table I shows some important statistics for our example,
first for the initial hypergraph, then after collapsing, and

Non-Singleton
Initial Collapsed Components

|V | 9 7 6
|E| 8 6 5
Aspect ratio 1.125 1.167 1.200
Cells 23 14 13
Density 0.319 0.333 0.433

TABLE I: Basic hypergraph statistics for our example.

finally after removing isolated singletons from the collapsed
hypergraph. For hypergraph data, a vastly high or low aspect
ratio can indicate difficulty in analysis. Note that as reductions
commence, the number of vertices, edges, and cells reduces,
while density increases. Finally, Fig. 2 shows the distribution
of node degree (# edges per node) and edge size.

Fig. 2: (Left) Distribution of node degree (# edges per node)
in our example. (Right) Distribution of edge size s.

In our pipeline the segmentation steps of collapsing, re-
moving isolated singletons, and computing s-components are
all performed using CHGL, as are node degree, edge size,
and s-component size distributions. Subsequent exploration of
the structures found within the components themselves, e.g.,
identification of stars and computation of diameters, are done
via HNX. HNX builds on the popular library NetworkX [9],
which offers metrics and algorithms for the analysis of graph
data. Euler diagram visualizations that appear in this paper are
provided directly by the HNX package.

III. HYPERGRAPH REPRESENTATIONS OF DNS DATA

The Domain Name System (DNS) provides a decentralized
service to translate from the domain names that humans keep
track of (e.g., www.google.com) to IP addresses that com-
puters require to communicate. Perhaps somewhat counter-
intuitively, DNS data present naturally as a hypergraph, in
being a many-many relationship between domains an IPs.
While typically this relationship is one-to-one, with each
domain uniquely identifying a single IP address and vice versa,
there are a number of circumstances which can violate this:
• Some domains have aliases so that multiple domains (e.g.,

misspellings) resolve to the same IP address.
• There are large hosting services in which one IP serves

up multiple different websites.
• Some domains are used so frequently that they must be

duplicated across hosts and therefore map to multiple IPs.
• IP addresses are randomly reassigned within some small

IP block so the same domain may map to multiple IP
addresses when queried over the course of a day.

In order to explore large volumes of DNS mappings
we turned to ActiveDNS, a data set maintained by
the Astrolavos Lab at Georgia Institute of Technology
(https://activednsproject.org). The project submits daily DNS
lookups for popular zones (e.g., com, net, org, biz, gov) and
lists of domain names (e.g., Alexa Top 1M). The data is
stored in Avro format (https://avro.apache.org) which provides
structured records for each DNS lookup in a compressed
binary file. Each record contains information including: query
date, lookup input (often a domain name), data returned by a
DNS server (often a list of IP addresses), and IP addresses of
the DNS servers that answered the query.

Our group acquired data from the time period April 24–
May 29, 2018, and in this paper we focus on the single day
of April 26, 2018. This day consists of 1,200 Avro files with
each file containing on average 900K records. There was some
data cleaning necessary to remove records with empty lookup
input or empty returned data. Additionally we removed any
records in which the lookup input was an IP address or the
returned data was a domain name. After cleaning, each file
was reduced to approximately 180K records.

We structured these DNS data as a hypergraph on a vertex
set V of IPs and edge set E of domains. Thus our hypergraphs
H coded each domain as a collection of its IPs. We show
results of our anlaysis below in Section V, including global
statistics and the results of targeted exploration.

IV. CHAPEL HYPERGRAPH LIBRARY (CHGL)

The Chapel HyperGraph Library (CHGL) [11] is a proto-
type exascale library written in Chapel [5], [6] that brings
generation, representation, and computation of hypergraphs to
the world of high performance computing (HPC). Thanks to
Chapel, CHGL provides scalability in both shared memory
and distributed memory contexts. Next, we discuss how hy-
pergraphs are created (property maps), filtered (segmentation),
and how metrics are computed in CHGL.

A. Property Map

In most cases, data underlying a hypergraph is more com-
plex than CHGL’s internal representation of vertices and
hyperedges as consecutive integers. In such situations, a
hash table that maps user-defined generic properties to the
consecutive identifiers of vertices and hyperedges is used
for translation. The properties are embedded in the internal
representation of the hyperedges and vertices, allowing O(1)
bidirectional lookup as well as locality when iterating over the
graph, shared-memory and distributed alike.

B. Segmentation

CHGL performs segmentation, or reduction, of the data in
multiple highly-parallel phases. Segmentation reduces both the
size of the graph to one that HNX can process in a reasonable
amount of time and the computational workload on CHGL
when computing metrics. Proper care is taken to ensure that
references to the collapsed hyperedges and vertices are taken
forward to the hyperedge or vertex that they collapsed into,
and that all references to removed hyperedges and vertices are

removed. This is performed in linear time and applies to both
the graph and property map.

1) Collapsing Duplicates: To prune away redundant enti-
ties, which is generally useful for computation, hyperedges and
nodes are placed into equivalence classes through the process
of collapsing described in Section II. All but one arbitrarily
chosen representative is removed from the graph. Determining
the equivalence class of a vertex or hyperedge can be done by
using a set or hash table, and can be performed in O(|V |)
or O(|V | log |V |) time, depending on the data structure used.
In practice, the time complexity is often linear or quasilinear,
but in the worst-case scenario when the hypergraph is fully
connected, the time complexity is O(|V |2) or O(|V |2 log |V |).

2) Removing Isolated Components: Isolated singletons, as
described in Section II, tend to be uninteresting. After collaps-
ing, these are pruned away in a straightforward manner.

3) Computing s-Components: We implemented computa-
tion of s-components using a parallel search method, where
we iterate over edges in parallel, and every edge begins an
independent search. The s-neighbors of an edge are marked
with the component number originating from the initial edge.
The component number is taken from a global atomic counter
at the beginning of every parallel search. 1-Components are
implemented by simply traversing the edges by following
included vertices (edge to vertex to neighbor edge), but 2-
components and higher require an implementation with set
intersections to check the cardinalities of adjacencies. This
implementation is well suited for a large number of small
components because most components end up being searched
by a single task. The best case scenario complexity of the
parallel search algorithm is linear, and the worst is quadratic
if the maximum number of component collisions occur. The
average complexity in our case is close to linear since the
DNS data has a large number of small components, and most
components are handled by a single task.

C. Metrics
1) Vertex Degree and Edge Cardinality Distribution: Ob-

taining the vertex degree and edge cardinality distributions is
simple and intuitive in CHGL, thanks to Chapel’s high-level
abstractions. This particular operation is short enough that it
can be presented in full in Figure 3. We compute these both
pre- and post-collapsing.

Fig. 3: Obtaining the vertex degree distribution in CHGL.

2) s-Component Size Distribution: The s-component size
distributions are computed, recording the number of nodes
and edges in each s-component and how many s-components
have each size. This allows us to understand how nodes and
edges are distributed, e.g., is there one giant component and a
few small components or are component sizes more uniformly
distributed.

D. Blacklisted IP Address and DNS Name Search

To demonstrate CHGL’s versatility, we use the property
map to search for blacklisted DNS names and IP addresses.
If there is a match we record the s-component that it is in
from the cached s-components. This is provided as output to
be analyzed, visualized, and observed in HNX.

V. RESULTS

A. Loading and Compute Time

Execution times of the stages of the CHGL DNS processing
pipeline are shown in Figure 4. s-Component computation
dominates the execution time for 128 or more files. The s-
components are reused when computing the s-component size
distributions and in computing the s-component of the black-
listed IP addresses and DNS names, leading to them taking
significantly less time. Collapsing duplicates and removing
isolated components scale linearly, as is expected for their time
complexity. The hypergraph is constructed in about the same
amount of time it takes to collapse it, showing that processing
DNS data is mostly compute-bound.

 0.0001

 0.01

 1

 100

 10000

 1x10
6

 1 4 16 64 256 1024

T
im

e
 (

s
e

c
o

n
d

s
)

of Files

CHGL Execution Times

Hypergraph Construction
Collapsing Duplicates

Remove Isolated Components
Connected Components

Metrics
Blacklist

Total

Fig. 4: Execution times (log-log scale).

B. Effectiveness of Reduction

The purpose of segmentation is to reduce the size of the
graph while also maintaining the data that is of interest.
Figure 5 shows the compression as a result of performing
segmentation. Collapsing of duplicate edges results in the most
compression, reducing the graph from 55% at one file to over
90% at 1024 files, which can be expected to improve further
when more data is processed. Removing isolated components
results in less compression as data size increases, likely due
to the premature marking of components as isolated prior to
having all of the data. Perhaps with larger amounts of data,
there will be a convergence to a stable number of isolated
components in the entirety of the DNS network. Note that
there are very few duplicate IP addresses on smaller samples,
but that may change as more data is processed; nonetheless,
collapsing duplicate vertices may be unnecessary and can
possibly save some time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 4 16 64 256 1024

R
e

d
u

c
ti
o

n
 (

%
)

of Files

Reduction from Segmentation

Post-Collapse Vertices Reduction
Post-Collapse Edges Reduction

Post-Removal Vertices Reduction
Post-Removal Edges Reduction

Fig. 5: Effectiveness of reduction from segmentation.

Non-Singleton
Initial Collapsed Components

|V | 10.6M 10.3M 557K
|E| 131.2M 11.0M 1.2M
Aspect ratio 0.081 0.941 0.460
Cells 157.4M 25.7M 15.9M
Density 1.14 E-7 2.26 E-7 2.35 E-5

TABLE II: Basic hypergraph statistics for ActiveDNS data for
April 26, 2018.

C. Basic hypergraph statistics

Above we reported on scaling of loading and compute time
using CHGL on varying numbers of ActiveDNS files, from 1
to 1,024. Here we report on analysis of the hypergraph built
from one full day, April 26, 2018, comprising 1,200 files. See
Table II for basic count statistics.

The node degree and edge size distributions are shown in
Figures 7a and 7c. Except for the small increase around x =
102 the node degree distribution looks like a power law or
heavy tailed distribution typical in real-world graphs [1]. The
degree distribution has a general decreasing tendency from
x = 1 to x = 70, it increases by roughly 1,000 through x =
80, and then returns to the downward trend. We do not know
why this occurs, but it is possible that it could be an artifact
of DNS server configuration practices. Edge size distribution
also seems to be heavy-tailed although somewhat more noisy
for low edge sizes than the degree distribution.

D. Hypergraph collapsing

See the second column in Table II for the simple count
statistics of the collapsed hypergraph. Notice that collapsing
resulted in a much more square incidence matrix since only 2%
of nodes were collapsed while 92% of edges were collapsed.
The number of cells in the collapsed hypergraph incidence
matrix is now reduced to 16% of the full hypergraph.

The distributions of node and edge duplicate counts are
shown in Figure 6. Notice that the distribution of duplicate
edge counts has a similar shape as the node degree distribution
of the original hypergraph with a slight increase around

Fig. 6: Distribution of duplicate node counts (top) and edge
counts (bottom).

x = 102. After seeing this it is possible that the nodes which
had degree around 70-80, where this increase occurs, were
actually in many duplicate edges which are now collapsed. The
node degree distribution for the collapsed hypergraph found in
Figure 7b further supports this hypothesis since the increase
around x = 102 in the node degree distribution is absent.

The edge size distribution post collapse is shown in Figure
7d. This distribution is very similar to that of the original
hypergraph, although it appears less noisy up through approx-
imately x = 20. This is not surprising since there were not
many duplicate nodes removed, so edges that remained likely
stayed close to their original size.

After collapsing duplicate nodes and edges we removed all
9,784,763 isolated singleton edges, or 89% of all remaining
edges. The only differences between the collapsed hypergraph
and the hypergraph after removal of isolated singleton compo-
nents is the number of degree 1 nodes and the number of size
1 edges. Therefore, we omit the final node degree and edge
size distributions since they are identical to the post-collapse
distributions except for the points at x = 1.

Comparing the pre-collapse (left), post-collapse (right), and
post-removal distributions (not pictured) in Figure 7, we
observe that hypergraph collapsing and removal significantly
alters the shape of degree and edge size distributions. In
addition to the qualitative differences apparent from the plots,
these differences can also be quantified using the Kolmogorov-
Smirnov (KS) distance metric, a normalized statistic between
0 and 1 in which larger values indicate greater degree dis-
tribution dissimilarity. In the case of the degree distributions
(top row), KS distance suggests the pre-collapsing hypergraph
differs significantly from the post-collapse and post-removal
degree distributions, with KS values of 0.36 and 0.34, respec-
tively. In the case of the edge-size distributions (bottom row),
the most pronounced difference is between the pre-collapsing
and post-removal edge size distribution, with a KS value of
0.60. Here, the large KS distance reflects the dramatic changes
at the head of the distribution, where the number of 1-edges
decreases from 118 million to 369 thousand.
E. s-Components

Our next step toward finding interesting subgraphs within
the single day of ActiveDNS data was to compute s-
components. CHGL computed s-components of the hyper-
graph post-collapse and post-removal of isolated singletons for
s = 1, 2, 3. Before exploring these components themselves we

(a) Initial node degree distribution (b) Post-collapse degree dist.

(c) Initial edge size distribution (d) Post-collapse edge size dist.

Fig. 7: Node degree and edge size distributions, on a log-log
scale, for April 26, 2018 DNS hypergraph. The x and y axes
are the same across both node plots and across both edge plots
to illustrate the changes through the collapsing procedure.

report the distribution of component sizes (both node and edge
counts) which are found in Figure 8. As s increases the shapes
of these distributions do not change much but they do tend to
skew more toward smaller components and the distribution
flattens slightly. This is required since every s-component is
contained within some s′-component for s′ < s: as s increases
components can only decrease in size. These distributions also
show that while there are some very large s-components the
majority are very small. Additionally, we see that the notion
of a “giant component” is much more prevalent in the set of
1-components than for s = 2 or 3. Indeed, as s increases the
largest component breaks up and the jump between the largest
component and second largest becomes smaller.

F. Exploration of segments using HNX

Once the hypergraphs were segmented into s-components
by CHGL we proceeded to do exploratory analysis using
HNX. In particular, we looked for:

• Occurrences of 1-stars within the 1-components, and
• s-components with maximum s-diameter for s = 2, 3.

Recall that a 1-star is a small hypergraph in which all edges
pairwise intersect in one node, and that one node is the same
across all pairwise intersections. The simplest 1-star has all
edges of size 2, see Figure 10 for an example of this case. In
our DNS use case a star is a collection of domains which
all share exactly one IP address but each also have their
own separate IP address(es). These are consistent with the
behavior of content delivery networks (CDN), geographically
distributed networks of servers with the goal of quickly and
reliably serving up content to a variety of users, which could
explain the existence of stars with a diverse set of IP addresses
since a consideration for IP assignment is geographic location.

Star motifs are also consistent with DNS sinkholes and domain
hosting services.

We searched the 1-components for 1-stars and looked for
size outliers. The distribution of number of edges per star
is shown in Figure 9. We can see that there is one notable
outlier, a star with 701 edges and 642 toplexes. The domain
names within this star appear to be mostly randomly generated
and from the .com and .net zones (e.g., twlwta.com,
comgslklpa.net) and the common IP address within all
domains is 17.17.17.17. A WHOIS search finds that this
IP address is within the network range of Apple, Inc. The
other 642 IPs present in this star come from 640 distinct of
/16 ranges. This is consistent with DNS sinkhole behavior
where traffic to a variety of (potentially malicious) domains is
redirected to a benign location [3]. And, in fact, current (i.e.,
not on April 26) DNS searches for a sample of domains within
this star have a Start of Authority (SOA) record with “sinkhole
root@sinkhole” as the name and contact for the server.

Unlike this largest star which had IP addresses in many
different ranges, smaller stars such as the one shown in Figure
10 tend to have all IPs and domains within the same, or a
relatively small set of, ranges and organizations. In this small
example the central IP address is from Google Cloud whereas
the leaves are from Microsoft Corporation. All five domains
are registered through the hosting site GoDaddy.com.

To discover interesting 2-components (resp. 3-components)
we calculated 2-diameters (resp. 3-diameters) of each of the
components and look more closely at those with maximal
diameter. In the case of the 2-components the maximum 2-
diameter is 6 and there is only one 2-component with that
2-diameter, shown in Figure 11. The IP addresses in this
component all belong to the IP range 103.86.122.0/24 and the
domains are registered to GMO INTERNET, INC. Moreover,
current DNS queries for most of these domains now resolve
to IPs in the range 103.86.123.0/24 and have a time to live
of only 120 seconds. This pattern of quickly changing of IP
address is consistent with the fast flux DNS technique which
can be used by botnets to hide malicious content delivery sites
and make networks of malware more difficult to discover [10].

The large diameter 3-components tell different stories. The
maximum 3-diameter is 3 and there are four 3-components
with this 3-diameter. One has only one toplex with six sub-
edges. Two others are fairly simple and, like the large 2-
diameter 2-component, are somewhat chain-like tracing out
a long path. The fourth is quite large with 70 nodes, 189
edges, and all IPs belonging to an IP range from Amazon
Technologies Inc.

Thus far our exploratory analysis of stars and large diameter
components results in some observations of typical patterns of
DNS use with interesting behavioral characteristics. It is our
hope that this type of exploration, when performed by network
defenders on their own systems, might result in detection of
abnormal patterns of behavior to augment their current threat
hunting capabilities.

The final exploration we performed was on our blacklist of
domains. Investigations by FireEye [4] recorded tactics, tech-

(a) 1-component node count distribution (b) 2-component node count distribution (c) 3-component node count distribution

(d) 1-component edge count distribution (e) 2-component edge count distribution (f) 3-component edge count distribution

Fig. 8: Node and edge count distributions, on a log-log scale, for s-components within simplified April 26, 2018 DNS
hypergraph. The x and y axes are the same across all three node count plots and across all three edge count plots to illustrate
the changes as s increases.

Fig. 9: Distribution of star sizes (# of edges).

Fig. 10: A small star seen in the ActiveDNS data.

niques, and procedures (TTP) used by the FIN7 organization
for various stages of the attack lifecycle. One in particular,

Fig. 11: The 2-component with largest 2-diameter.

for maintaining presence on a system, was to use command
and control domains registered with “odd format and top-level
domains.” The format they identified was four or five letters
followed by one of the following extensions: pw, us, club,
info, site, top, e.g., ttjic.top. We used CHGL to do a regex
search within the April 26 data set for any domains that fit this
pattern and found 2,088 matching domains. For each found
domain we recorded the s-components which contain it, for
s ∈ {1, 2, 3}. Many of the found domains are in the largest s-
component and likely are not connected to one another within
that component. But, in at least one case we found a set of ten
domains that follow this regex pattern and are all contained
within the same 2-component with 16 edges and 3-component
with 13 edges. The 3-component, shown in Figure 12, is nearly
a star. There is no common intersection among all domains
although there are two central IPs and each domain contains
at least one of these two IPs. All domains in this component

Fig. 12: A 3-component with 13 edges containing 10 black-
listed domains.

are registered by “Chengdu west dimension digital.” Although
it is not possible to discern whether or not these domains are
part of the FIN7 network, we illustrate that this type of targeted
analysis could be used to discover how known TTP signatures
may be present within a data set.

VI. CONCLUSIONS AND FUTURE WORK

While our research group has been developing hypergraph
methods and mathematics over a moderate period, this paper
reflects the first application of CHGL to cyber data, and the
first use of HNX, which is newly released.

The current approach is limited in a number of ways.
First, ActiveDNS records data from DNS lookups on a daily
basis (or perhaps multiple times per day), but it does not do
continual monitoring. This discrete sampling may mean that
the pipeline misses patterns that would normally be seen in a
more continuous approach. Additionally, the current analysis is
for a single day, and extending to multiple days in the current
architecture will exacerbate issues with memory bounds. This
might be mitigated using a theory of dynamic hypergraphs
(much like that of dynamic graphs) to understand the time-
evolution of DNS or similar data.

Additionally, certain DNS relationships are ignored, such as
recursive DNS records where one domain resolves not to an
IP address but to another domain name. This would require
more complicated mathematics than just hypergraphs, likely
cell complexes or partial orders, which we have started to
consider in our research but not yet in our analysis. We also
ignore other pieces of metadata like the authority IP addresses
(those servers which answered the DNS request).

Additional future work includes:
• We are extending our prior theoretical work [13] to a

full consideration of the mathematical foundations of hy-
pergraphs for data science, including spectral approaches
and consideration of multiplicity weightings.

• A range of hypernetwork methods generalizing network
science centrality, connectivity, clustering coefficients,
etc. are available and under development for application.

• Also central to our approach is the consideration of
hypergraphs as multidimensional objects, and thus in-

herently available for topological applications, including
homology measurement for identification of loops and
potential gaps in the underlying data.

• CHGL is also under active development to include topol-
ogy, homology measures, a proper graph library, and a
distributed data model.

• Finally, application and data analysis continues, including
DNS, additional cyber data beyond DNS, and additional
application domains including computational biology and
social hypernetworks.

VII. ACKNOWLEDGEMENTS

This work was partially funded under the High Performance
Data Analytics (HPDA) program at the Department of En-
ergy’s Pacific Northwest National Laboratory. Pacific North-
west National Laboratory is operated by Battelle Memorial
Institute under Contract DE-ACO6-76RL01830.

Special thanks to William Nickless for helpful conversations
surrounding the DNS analysis and interpretation.

REFERENCES

[1] Albert-László Barabási and Eric Bonabeau. Scale-free networks. Scien-
tific american, 288(5):60–69, 2003.

[2] Claude Berge and Edward Minieka. Graphs and Hypergraphs. North-
Holland, 1973.

[3] Guy Bruneau. DNS Sinkhole. https://www.sans.org/reading-room/
whitepapers/dns/dns-sinkhole-33523.

[4] N Carr, K Goody, S Miller, and B Vengerik. On the
Hunt for FIN7: Pursuing an Enigmatic and Evasive Global
Criminal Operation. https://www.fireeye.com/blog/threat-research/2018/08/

fin7-pursuing-an-enigmatic-and-evasive-global-criminal-operation.html.
[5] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel Programmability

and the Chapel Language. Int. J. High Perform. Comput. Appl.,
21(3):291–312, August 2007.

[6] Bradford L. Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Dun-
can, Michael Ferguson, Ben Harshbarger, David Iten, David Keaton,
Vassily Litvinov, Preston Sahabu, and Greg Titus. Chapel comes of age:
Making scalable programming productive. Cray Users Group, 2018.

[7] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V.
Catalyurek. Parallel hypergraph partitioning for scientific computing. In
Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium. IEEE, 2006.

[8] Ernesto Estrada and Juan A. Rodrı́guez-Velázquez. Subgraph centrality
and clustering in complex hyper-networks. Physica A: Statistical
Mechanics and its Applications, 364:581–594, may 2006.

[9] AA Hagberg, DA Schult, and PJ Swart. Exploring network structure,
dynamics, and function using networkx. In Gaël Varoquaux, Travis
Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python in
Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[10] jamie.riden. How Fast-Flux Service Networks Work. http://www.
honeynet.org/node/132. Accessed: 2018-11-26.

[11] Louis P Jenkins, Tanver Bhuiyan, Sarah Harun, Christopher Lightsey,
Sinan Aksoy, Tim Stavenger, Marcin Zalewski, Hugh Medal, and
Cliff Joslyn. Chapel hypergraph library (chgl). In 2018 IEEE High
Performance Extreme Computing Conf. (HPEC 2018), 2018.

[12] George Karypis and Vipin Kumar. Multilevel k-way hypergraph parti-
tioning. VLSI Design, 11(3):285–300, jan 2000.

[13] Emilie Purvine, Sinan Aksoy, Cliff Joslyn, Kathleen Nowak, Brenda
Praggastis, and Michael Robinson. A topological approach to repre-
sentational data models. In S. Yamamoto and H. Mori, editors, Human
Interface and the Management of Information. Interaction, Visualization,
and Analytics (LNCS, volume 10904), pages 90–109, 2018.

[14] Garry Robins and Malcolm Alexander. Small worlds among interlocking
directors: Network structure and distance in bipartite graphs. Computa-
tional & Mathematical Organization Theory, 10(1):69–94, may 2004.

[15] J. Wang and T.T. Lee. Paths and cycles of hypergraphs. Science in
China Series A: Mathematics, 42(1):1–12, 1999.

