
Concurrent and Scalable Hash
Table for the Go Programming

Language
By: Louis Jenkins

Advisor: Michael Spear

What is the Go programming language?

• Concurrent Programming Language
• Designed to make concurrency easy
• NOT a parallel programming langauage

• Philosophy
• “Do not communicate by sharing memory, instead share memory by

communicating”
• Favors message passing over shared memory synchronization

• Channels over Locks and Atomics
• Atomics were only added after Go’s 1.0 Release

• Created, Developed, and Maintained by Google

• Utilizes Cooperative and Preemptive Multitasking through Goroutines

Problems with the Go programming
language?

• Data structures are not naturally concurrent-safe
• Unsynchronized writes can trigger undefined behavior

• Only one writer is allowed access at any given time

• Only option is to use coarser-grained synchronization or message passing

• Does NOT allow the user to ‘roll their own’ map
• There is no safe nor reliable way to hash key objects outside of runtime

• No way to implement a custom iterator
• I.E, no for-range looping over your own data structure

• Attempts to create a concurrent map by others in the past fall short
• Forced to use the built-in map, and restrict the types of keys allowed.

• Inefficient

Solution: Adding a Concurrent Hash Table

• Contributions
• Allow Concurrent Reads and Writes

• Allows true parallelism that Go currently lacks

• Ensure all access and assignments to the map are atomic
• No race conditions, utilize fine-grained locking

• Support all operations that the normal Go hash table has
• Insertion, Lookup, Remove, Iteration

• Provide reasonable semantics to the programmer
• Atomic read-modify-write of single element

• Guarantees on key/value relationships during iteration

Go: Syntax and Compiler
Transformation

Race-Free Map Accesses

Original Code

Transformation Pseudocode

• Map accesses not designed to be concurrent
• Race-Condition where pointer to

element returned from map may be
mutated or deleted before assignment

• Solution
• Hold onto the lock until after the

assignment
• Requires a call to ‘maprelease’

• Added as injected call by compiler
• Transparent to user

Go: Syntax and Compiler Transformation
AST Injection

. CALLFUNC-init

. . AS u(100) l(6) tc(1)

. . . NAME-main.autotmp_1 u(1) a(true) l(6) x(0+0) class(PAUTO) esc(N) tc(1) assigned used(true) int

. . . IND u(100) l(6) tc(1) int

. . . . CALLFUNC u(100) l(6) tc(1) nonnil PTR64-*int

. NAME-runtime.mapaccess1_fast64 u(1) a(true) x(0+0) class(PFUNC) tc(1) used(true) FUNC-func(*byte, map[int]int, int) *int

. . . . CALLFUNC-list

. AS u(2) l(6) tc(1)

. INDREG-SP a(true) l(6) x(0+0) tc(1) addrtaken runtime.mapType·2 PTR64-*byte

. ADDR u(2) a(true) l(6) tc(1) PTR64-*uint8

. NAME-type.map[int]int u(1) a(true) l(4) x(0+0) class(PEXTERN) tc(1) uint8

. AS u(1) l(6) tc(1)

. INDREG-SP a(true) l(6) x(8+0) tc(1) addrtaken runtime.hmap·3 MAP-map[int]int

. NAME-main.map_ u(1) a(true) g(1) l(4) x(0+0) class(PAUTO) f(1) tc(1) used(true) MAP-map[int]int

. AS u(1) l(6) tc(1)

. INDREG-SP a(true) l(6) x(16+0) tc(1) addrtaken runtime.key·4 int

. NAME-main.autotmp_0 u(1) a(true) l(6) x(0+0) class(PAUTO) esc(N) tc(1) assigned used(true) int

. CALLFUNC u(100) l(6) tc(1)

. . NAME-runtime.maprelease u(1) a(true) x(0+0) class(PFUNC) tc(1) used(true) FUNC-func()

. AS u(2) l(6) colas(true) tc(1)

. . NAME-main.value u(1) a(true) g(3) l(6) x(0+0) class(PAUTO) f(1) tc(1) assigned used(true) int

. . NAME-main.autotmp_1 u(1) a(true) l(6) x(0+0) class(PAUTO) esc(N) tc(1) assigned used(true) int

New Keyword: ‘sync.Interlocked’ and their
Contexts

Region
• Allows read-modify-write operations over

that key-value pair
• The bucket’s lock is held for the entire

block, allowing for atomic transformations
of that data

• Acts as a per-bucket mutex

Range

• Changes semantics of for-range loop
over map from per-bucket snapshot,
to interlocked bucket iteration.

Iteration – Snapshot and Interlocked

Atomic Snapshot

• Allow concurrent and parallel readers and writers, as well as iterators

• High scalability, although slower than the built-in iterator

Interlocked
• Lock -> Iterate -> Unlock

• Iterate over actual bucket data
• More coarse-grained than atomic snapshot

• Guarantees the key and value are only accessible
by the current Goroutine

• ‘map[key] == value’ always true

• While iterating, no other Goroutine may access
that data, so long operations stall other
Goroutines

• No overhead

Both

• Lock -> Copy -> Unlock -> Iterate Copy
• Iterate over snapshot of bucket data

• More fine-grained than interlocked
• Does not guarantee consistency

• I.E: Element was removed from map, but is
present in the snapshot

• Garbage Collector does not collect the pointer
data in the snapshot until it finishes

• Allows blocking and/or long operations to
process data without stalling other Goroutines.

• Moderate Overhead

Concurrent Map Design

Legend: • Per-Bucket Locking
• Must be acquired by contending Goroutines before accessing

• Utilizes a Test-And-Test-And-Set Spinlock with dynamic yielding and
exponential back-off under contention

• Fine-grained locking

• Resizing
• When a bucket is full, the bucket’s data will be rehashed to another array

of buckets. The bucket’s descriptor will be updated to point to the
aforementioned array of buckets. This is referred to as a ‘Recursive
Bucket’

• The new array of buckets are twice the size of the previous, and use a
different seed to hash which reduces collision as well as possible
contention

• Deadlock Prevention
• Only one bucket descriptor lock may be held by any given Goroutine at a

time.

∅ Empty Bucket (nil)

🔒 Non-Empty Bucket
(Locked)

∈ Non-Empty Bucket
(Not Locked)

↪ Recursive Bucket

Concurrent Map Design

Insertion

Resizing

∅

∅

∅

∅

Acquire lock on
bucket

∅

∅

🔒

∅

Insert Finish Insertion

∅

∅

∈

∅

∅

∅

∈

∅

Acquire lock on
bucket

∅

∅

🔒

∅

Insert

Full, Rehash to
new array and

update
descriptor

∅

∅

↪

∅

∅

∈

∈

∅

∅

∈

∈

∅

Concurrent Map Design

Lookup

🔒

↪

↪
∈

∅

↪

∈
∅

🔒

∈

∈
∅

🔒

∈

∈
∅

🔒

∈

∈
∅

∅

∅

🔒
∅

∅

∈

∈
🔒

∅

🔒

∈
∅

🔒

∈

∈
∅

Want this

🔒

↪

↪
∈

∅

↪

∈
∅

🔒

∈

∈
∅

🔒

∈

∈
∅

🔒

🔒

∈
∅

∅

∅

🔒
∅

∅

∈

∈
🔒

∅

🔒

∈
∅

🔒

∈

∈
∅

Acquired
Lock

Concurrent Map Design

Iteration – Atomic Snapshot

Iteration - Interlocked

∈
∈
∅
∈

Fixed
Start

Acquire Lock 🔒
∈
∅
∈

Make
snapshot,
Release

Iterate over
snapshot

∈
∈
∅
∈

Next

∈
∈
∅
∈Randomized

Start
Acquire Lock

∈
∈
∅
🔒

Iterate over
bucket,
Release

∈
∈
∅
∈

Next

Benchmark – Integer Set

1 2 4 8 16 32

ConcurrentMap 4.24 6.54 11.9 22.22 19.23 22.22

SynchronizedMap (Mutex) 5.13 3.72 3.24 2.75 2.95 2.85

ReaderWriterMap (RWMutex) 4.29 2.14 2.35 2.47 1.98 2.17

0

5

10

15

20

25

M
IL

LI
O

N
 O

P
S/

SE
C

GOROUTINES

MICROBENCHMARK - INTSET (8-CORE)

ConcurrentMap SynchronizedMap (Mutex) ReaderWriterMap (RWMutex)

Benchmark – Integer Set

1 2 4 8 16 32

ConcurrentMap 4.57 8.13 13.33 27.03 41.67 62.5

SynchronizedMap (Mutex) 5.18 4.93 2.59 1.67 1.81 1.51

ReaderWriterMap (RWMutex) 4.95 3.08 2.92 2.9 2.67 2.59

0

10

20

30

40

50

60

70

M
IL

LI
O

N
 O

P
S/

SE
C

GOROUTINES

MICROBENCHMARK - INTSET (24-CORE)

ConcurrentMap SynchronizedMap (Mutex) ReaderWriterMap (RWMutex)

Benchmark – Read-Only Iteration

1 2 4 8 16 32

ConcurrentMap 15.87 13.7 14.08 5.05 3.79 2.45

ConcurrentMap-Interlocked 17.86 15.62 15.38 7.81 3.85 2.28

DefaultMap (No Lock) 33.33 28.57 23.26 11.76 7.52 3.97

0

5

10

15

20

25

30

35

M
IL

LI
O

N
 O

P
S/

SE
C

GOROUTINES

MICROBENCHMARK - READ-ONLY ITERATION (8-CORE)

ConcurrentMap ConcurrentMap-Interlocked DefaultMap (No Lock)

Benchmark – Read-Write Iteration

1 2 4 8 16 32

ConcurrentMap 2.6 2.49 2.21 1.56 0.81 0.41

ConcurrentMap-Interlocked 3.26 2.33 2.16 1.59 0.82 0.47

SynchronizedMap (Mutex) 10 4.13 2.45 1.15 0.55 0.33

ReaderWriterMap (RWMutex) 10.1 5.65 2.77 1.38 0.68 0.3

0

2

4

6

8

10

12

M
IL

LI
O

N
 O

P
S/

SE
C

GOROUTINES

MICROBENCHMARK - READ-WRITE ITERATION (8-CORE)

ConcurrentMap ConcurrentMap-Interlocked SynchronizedMap (Mutex) ReaderWriterMap (RWMutex)

Benchmark – Read-Write Iteration

1 2 4 8 16 32

ConcurrentMap 2.56 2.25 2.3 2.36 1.52 1.09

ConcurrentMap-Interlocked 2.9 2.92 2.79 1.78 1.58 1.26

SynchronizedMap (Mutex) 8.93 4.46 2.23 1.12 0.56 0.3

ReaderWriterMap (RWMutex) 8.93 4.48 2.17 1.1 0.55 0.29

0

1

2

3

4

5

6

7

8

9

10

M
IL

LI
O

N
 O

P
S/

SE
C

GOROUTINES

MICROBENCHMARK - READ-WRITE ITERATION (24-CORE)

ConcurrentMap ConcurrentMap-Interlocked SynchronizedMap (Mutex) ReaderWriterMap (RWMutex)

Benchmark – Combined
Insert, Lookup, Removal, Iteration

1 2 4 8 16 32

ConcurrentMap 6.85 10.87 20.83 43.48 55.56 58.82

ConcurrentMap-Interlocked 6.58 10.87 27.78 47.62 55.56 62.5

SynchronizedMap (Mutex) 9.71 11.76 12.99 17.24 14.29 13.7

ReaderWriterMap (RWMutex) 10.42 10.1 9.62 10.42 10.99 10.53

0

10

20

30

40

50

60

70

M
IL

LI
O

N
 O

P
S/

SE
C

GOROUTINES

MICROBENCHMARK - COMBINED (8-CORE)

ConcurrentMap ConcurrentMap-Interlocked SynchronizedMap (Mutex) ReaderWriterMap (RWMutex)

Benchmark – Combined
Insert, Lookup, Removal, Iteration

1 2 4 8 16 32

ConcurrentMap 5.99 14.49 37.04 90.91 142.86 200

ConcurrentMap-Interlocked 5.43 14.71 41.67 76.92 100 200

SynchronizedMap (Mutex) 9.09 13.7 18.87 22.22 21.28 23.26

ReaderWriterMap (RWMutex) 10.53 9.17 12.5 14.93 15.38 16.13

0

50

100

150

200

250

M
IL

LI
O

N
 O

P
S/

SE
C

GOROUTINES

MICROBENCHMARK - COMBINED (24-CORE)

ConcurrentMap ConcurrentMap-Interlocked SynchronizedMap (Mutex) ReaderWriterMap (RWMutex)

Conclusion

• Only a summary
• Wasn’t enough time to go into detail about more

• Effort
• 36 Commits
• 7,300+ Line of Code additions

• Future
• Submit proposal to Google’s Go language development team

• Relatively familiar with mailing list
• Continue contributing to Go

• Publish research paper with Dr. Spear
• Submission to tech conference in a few weeks

