
Chapel Aggregation Library (CAL)
Louis Jenkins

Pacific Northwest National Laboratory
louis.jenkins@pnnl.gov

Marcin Zalewski
Pacific Northwest National Laboratory

marcin.zalewski@pnnl.gov

Michael Ferguson
Cray Inc.

mferguson@cray.com

Abstract—Fine-grained communication is a fundamental prin-
ciple of the Partitioned Global Address Space (PGAS), which
serves to simplify creating and reasoning about programs in
the distributed context. However, per-message overheads of
communication rapidly accumulate in programs that generate a
high volume of small messages, limiting the effective bandwidth
and potentially increasing latency if the messages are generated
at a much higher rate than the effective network bandwidth. One
way to reduce such fine-grained communication is by coarsening
the granularity by aggregating data, or by buffering the smaller
communications together in a way that they can be handled in
bulk. Once these communications are buffered, the multiple units
of the aggregated data can be combined into fewer units in an
optimization called coalescing.

The Chapel Aggregation Library (CAL) provides a straight-
forward approach to handling both aggregation and coalescing
of data in Chapel and aims to be as generic and minimal as
possible to maximize code reuse and minimize its increase in com-
plexity on user applications. CAL provides a high-performance,
distributed, and parallel-safe solution that is entirely written as a
Chapel module. In addition to being easy to use, CAL improves
the performance of some benchmarks by one to two orders of
magnitude over naive implementations at 32 compute-nodes on
a Cray XC50.

I. INTRODUCTION AND RELATED WORK

The Chapel programming language [1], [2] is an open-source
language for parallel computing on large-scale systems that
is easy-to-use, portable, and scalable. Chapel is a partitioned
global address space (PGAS) language, but it differs from
other PGAS languages such as UPC [3] in that it abstracts
communication and performs (most of) it implicitly. Chapel
transforms individual reads and writes of remote memory
into GET and PUT RDMAs, and it similarly transforms
remote procedures and tasks into active messages. While this
significantly reduces the complexity involved in writing correct
Chapel user programs, it can often make it difficult for the user
to write programs that perform well because of the overhead
of small messages. In this work, we address this problem
with aggregation and coalescing. Aggregation coarsens the
granularity of communication by pooling together individual
units of data into larger chunks, and coalescing reduces the
amount of data to be communicated by combining some of
these units.

Other works in aggregation, such as AM++ [4], perform
aggregation and coalescing directly on active messages [5].
Chapel, however, is a higher-level language composed of
layers, which are internal libraries that handle specific tasks.
The communication layer is the runtime abstraction layer
responsible for handling RDMAs and active messages, such

as GASNet [6], [7] and uGNI [8]. The communication layer
must also coordinate with the tasking layer responsible for
the creation, scheduling, and management of tasks, which are
multiplexed on top of threads, such as qthreads [9]. Both
layers must interact with the memory management layer, the
abstraction layer that is responsible for handling requests to
allocate and de-allocate memory and is implemented with a
low-level allocator such as jemalloc [10].

The Chapel Aggregation Library (CAL), presented in this
work, is not the first project to address the problem of fine-
grained communication. Ferguson and Buettner [11] developed
a software write-back cache that is integrated into Chapel’s
run-time and compiler. The software cache enables aggre-
gation and overlap of individual PUT and GET operations,
and provides support for programmer-specified prefetching.
Where the software cache is entirely automated, Kayraklioglu,
Ferguson, and El-Ghazawi [12] describe the concept of locality-
aware productive prefetching support (LAPPS), where unlike
the software cache, the user determines what to prefetch
and the run-time handles how the data is prefetched in
an implementation-specific manner. Unlike LAPPS and the
software cache, CAL does not directly support prefetching and
instead takes the approach of aggregating and coalescing user-
defined data instead of individual PUT and GET operations.
Unlike the software cache and LAPPS, CAL does not require
any compiler or run-time changes or integration, and it exists
entirely as a Chapel module, and as such, it gains the benefit of
being able to work with Chapel’s rich data and task parallelism
and locality constructs.

In Section II, we discuss the core design details and
philosophy behind CAL, describe the library API, and detail
the interaction between the library and the user. In Section III,
we provide a sketch of the algorithms used in Chapel-like
pseudo-code. In Section IV, we present examples of the usage
of the library in Chapel and provide a comparison between a
simple naive implementation and one using CAL to demonstrate
changes in design complexity of the algorithm. In Section V,
we provide performance improvements over the naive examples
demonstrated in Section IV. In Section VI, we discuss design
choices and difficulties we faced. Finally, in Section VII
we discuss planned improvements and plans to integrate the
aggregation library into Chapel and how it may be used in
other PGAS languages.

II. DESIGN

CAL is designed according to the following design principles:

L0 Buf0

Buf1

Buf2

Buf3

T0

L2 Buf0

Buf1

Buf2

Buf3

T0

Tn

Tn

…
…

L1Buf0

Buf1

Buf2

Buf3

T0

L3Buf0

Buf1

Buf2

Buf3

T0

Tn

Tn

…
…

Fig. 1: The design of CAL aggregation.

• Minimalism: CAL is designed to be small and unassuming,
deferring decisions such as how the buffer is coalesced
or processed to the user. This allows CAL to be reusable
and modular. In other words, CAL’s only responsibility is
aggregating outgoing units of data; how the aggregated data
is handled is at the discretion of the user. This minimalist
design works well in conjunction with the high-level features
of Chapel, which can seamlessly handle transfers of buffers,
parallel execution, and all other aspects that a library like
CAL might have to handle in a lower-level runtime.

• Distributed: CAL objects appear local but act distributed,
following the spirit of Chapel. CAL employs privatization
(similar to Chapel arrays) and optimized such that accesses
to an instance of the library is forwarded to the appropriate
local privatized instance. That is, it is inherently safe and
efficient for multiple locales to share access to the same
CAL instance.

• Parallel-Safe: CAL is designed to be transparently thread-
safe and efficient. It employs lock-free data structures to
aggregate units of data without race conditions and errors.

The basic design of CAL is illustrated in Fig. 1. Every locale,
L0, L1, L2, and L3 in the figure, maintains per-destination
buffers (in Section III we discuss how the buffers are managed
in concurrent buffer pools). User tasks (T0, · · · , Tn in Fig. 1)
generate data items and insert them into a CAL aggregator
along with the target locale. When a buffer is full, it is sent
to the destination locale, and the data items included in the
buffer are processed there. Since, as stated above, CAL only
provides the basic aggregation functionality, details are left to
the user. For example, the same-locale buffers indicated by
dashed lines in Fig. 1 are optional and can be used if local
aggregation is beneficial.

In the remainder of this section, we briefly cover the facets
of CAL’s design. The simplified version of the API of CAL,

1 class Buffer {
2 type dataType;
3 var data : [0..#BufferSize] dataType;
4 var claimed : atomic int;
5 var filled : atomic int;
6 var stolen : atomic bool;
7 var pool : MemoryPool(Buffer(dataType));
8 proc done();
9 }

10 class Aggregator {
11 type dataType;
12 var pools :
13 [LocaleSpace] MemoryPool(Buffer(dataType));
14 var destBuffers :
15 [LocaleSpace] Buffer(dataType);
16 proc aggregate(data : dataType, loc : locale) :
17 Buffer(dataType);
18 iter flush() : (Buffer(dataType), locale);
19 }

Fig. 2: The basic API of CAL.

which will be discussed in more detail in later subsections, is
summarized in Fig. 2. The API consists of two classes, the
Aggregator that manages buffers and provides aggregation

API and the Buffer class that encapsulates all details of a
thread-safe buffer.

A. Minimalism

Whereas the software cache of Ferguson and Buettner
[11] aggregates individual PUT and GET operations, CAL
aggregates individual generic units of data defined by the user.
CAL strives for maximizing code-reuse, and as such, it is
generic on the type of data to be aggregated. The Aggregator
is generic on the type specified by the user, which will be the
type of data to aggregate.

1 // Create an aggregator that aggregates integers
2 var aggregator = new Aggregator(int);

The user can then begin aggregating data via aggregate ,
which will return a Buffer if that task took the last available
slot in the buffer for the requested destination. If a buffer has
been returned, the user can then apply their own coalescing
and data processing. Once the user is finished they must invoke
the done function on the buffer so that it can be recycled by
the Aggregator .

1 // Aggregate the integer '1' to Locale 1
2 const data = 1;
3 const loc = Locales[1];
4 var buf = aggregator.aggregate(data, loc);
5 if buf != nil {
6 handleBuffer(buf, loc);
7 buf.done();
8 }

When manually flushing the Aggregator , it can be handled in
the same way as if a buffer was returned via aggregating data.

1 forall (buf, loc) in aggregator.flush() {
2 handleBuffer(buf, loc);
3 }

Besides adjusting the inner workings of a CAL Aggregator
such as buffer size or the number of buffers in buffer pools,
the above three snippets of code represent the total complexity
of using CAL.

B. Distributed

In Chapel, class instances are stored on the heap of the locale
that it is allocated on, and these instances do not migrate to
other locales during their lifetime. Hence accesses such as
class fields to class instances allocated in remote memory will
result in an implicit GET operation to the locale it is hosted
on. To eliminate this implicit communication, the Aggregator
makes use of a process called privatization where a deep-copy
of the data structure is created and managed on each locale,
where each access of the Aggregator is forwarded to its
privatized class instance. Privatization allows us to access data
in a locale-private manner such that updates to the class fields
can be performed independently of all other locales. Hence
each Aggregator instance stores their own destBuffers , the
destination buffers, and pool , the memory pool for recycling
buffers. The end result is that the user is able to access the
Aggregator without needing to worry about locality and can

use it in a very intuitive manner.

1 on Locales[1] {
2 const data = 1;
3 const loc = Locales[0];
4 var buf = aggregator.aggregate(data, loc);
5 if buf != nil then handleBuffer(buf, loc);
6 }

C. Parallel-Safe

As Chapel is a language focusing on parallelism, we ensure
that CAL is both thread-safe and scalable. The Aggregator
is safe to call from multiple tasks as well as locales, making
it easy to use with Chapel’s concurrent constructs such as in
forall loops.

1 forall i in 1..N {
2 const loc = Locales[1];
3 var buf = aggregator.aggregate(i, loc);
4 if buf != nil then handleBuffer(buf, loc);
5 }

III. IMPLEMENTATION

Using privatization, the Aggregator is privatized such that
an instance representing the local part of its data structures
is created on each locale. Each instance is locale-private in
that mutations are performed independently and locally, on the
local part of the distributed data structure. In summary, the
privatized instances are referenced via a privatization identifier,
or pid, which is the index into a run-time data structure, the

privatization table. The privatization table is replicated across
all locales such that the pid associated with an instance on one
locale will also refer to an instance on another locale. To enable
efficient retrieval of the pid, we record-wrap it by storing it in a
record , which is equivalent to a C struct that can be passed by

value. By making use of forwarding , we can forward any and
all method calls and field accesses to the privatized instance
associated with the pid. An additional compiler optimization,
called remote-value forwarding, ensures that the record-wrapper
of an Aggregator is always handled by-value, eliminating
most communication involved with retrieving the pid. With
the combination of record-wrapping, forwarding, and remote-
value forwarding, the Aggregator can be used seamlessly with
Chapel’s language constructs and from multi-locale contexts.

When an Aggregator is constructed, we create a memory
pool for recycling buffers for all destinations. Each locale
has a destination buffer for itself to handle cases where
data is aggregated for local consumption. In the current
implementation, we utilize a synchronized free list that
enables obtaining buffer via getBuffer and recycling an
existing buffer via recycleBuffer(buf : Buffer(dataType) ;
getBuffer will create buffers on-demand with the option of

limiting the number of buffers allocated at any given time. The
Buffer itself is a simple class wrapper for a Chapel array with

three additional fields. The claimed field is an atomic counter
used to claim an index in the buffer; the filled field is an
atomic counter use to keep track of the number of finished
stores into the buffer; and the stolen field is used to keep
track of whether or not the buffer is about to be flushed.

When the buffer is about to be recycled, we explicitly
avoid sanitizing the buffer (by calling reset()), performed
by resetting all fields to their default values, until it is about to
be returned from the memory pool for reasons that we discuss
later.

1 proc Buffer.done() {
2 on this do pool.recycleBuffer(this);
3 }

Sanitizing the buffer is performed in a specific order, so it is
imperative that each atomic write is performed with sequential
consistency, the default for atomic read and writes in Chapel.

1 proc Buffer.reset() {
2 stolen.write(false);
3 filled.write(0);
4 claimed.write(0);
5 }

Appending to the buffer involves looping until satisfying a
specific condition. Upon each iteration of the loop, the task will
read the current destination buffer and perform a fetch-and-add
on the claimed counter to ‘claim’ an index. If the claimed
index is not within a valid range, the task will yield the current
thread it is multiplexed on and loop again. When the index is
considered valid, the task is safely able to write its value into
that position in the buffer. After the task completes its write, it

will perform another fetch-and-add, this time on the filled
counter, and if that task is the last to fill the buffer it will
attempt to ‘steal’ the buffer for flushing. If it can successfully
steal the buffer, it swaps out the buffer and returns it to the
user for processing.

1 proc aggregate(data : dataType, loc : locale) :
2 Buffer(dataType) {
3 while true {
4 // Get current buffer
5 var buf = destBuffers[loc.id];
6 // Claim an index in the buffer
7 var idx = buf.claimed.fetchAdd(1);
8 // Buffer is full or going to be flushed soon
9 // Yield and try again

10 if idx >= buf.cap {
11 chpl_task_yield();
12 continue;
13 }
14 // Store and notify we have filled up another slot
15 buf[idx] = data;
16 var nFilled = buf.filled.fetchAdd(1) + 1;
17 // If we are the last to fill, see if we can steal
18 if nFilled == buf.cap &&
19 !buf.stolen.testAndSet() {
20 // Swap buffers and return old for processing
21 destBuffers[loc.id] = pools[loc.id].getBuffer();
22 return buf;
23 }
24 // Not the last to fill buffer or already stolen
25 return nil;
26 }
27 }

Flushing is performed on each locale’s privatized instance.
Flushing the privatized instance is performed by iterating in
parallel over all destination buffers, and for each buffer, we
attempt to steal it. Stealing the buffer involves performing an
atomic test-and-set on the stolen flag. If we successfully set
the flag, we can ensure that no other task can steal the buffer.
We then atomically exchange the claimed counter’s current
value with the buffer’s capacity to ensure that future tasks
will fail their fetch-and-add on the buffer, then swap out the
buffer. Knowing the number of currently claimed indices in the
buffer, we spin until the filled count is equal to the value
we exchanged for. Once all tasks have finished their writes,
we can safely yield the buffer to the user for processing and
to notify when they are done .

1 iter flush() : (Buffer(dataType), locale) {
2 // Spawn a task on each locale
3 coforall loc in Locales do on loc {
4 // Get privatized instance.
5 var instance =
6 chpl_getPrivatizedCopy(this.type, pid);
7 // Attempt to flush all buffers in parallel
8 forall loc in Locales {
9 var buf = destBuffers[loc.id];

10 // Try to steal the buffer
11 if !buf.stolen.testAndSet() {
12 // Simultaneously obtain the claimed indices
13 // and prevent newer tasks from claiming more.
14 var claimed = buf.claimed.exchange(buf.cap);

15 if claimed > 0 {
16 // Swap buffers
17 destBuffers[loc.id] =
18 pools[loc.id].getBuffer();
19 // Wait for claimed stores to complete
20 buf.filled.waitFor(claimed);
21 // Yield buffer and locale for processing
22 yield (buf, loc);
23 } else {
24 // Reset buffer
25 buf.reset();
26 }
27 }
28 }
29 }
30 }

Due to having per-destination buffer pools, we can ensure
that no task that is delayed for an extended duration of time
can end up writing to a buffer that gets recycled for another
destination. By sanitizing the buffer immediately before its use,
we can ensure that no similarly delayed task can write to a
buffer that is sitting in the buffer pool, as the claimed counter
will still show as full. The buffer pools are not just needed
for efficiency, but also to eliminate potential race conditions.
Currently, buffers cannot be safely reclaimed without more
advanced memory reclamation techniques like epoch-based
reclamation, which is possible in Chapel despite lack of
thread-local storage [13], or quiescent state-based reclamation,
which is an in-progress effort [14] to implement in Chapel.
Usage of hazard pointers [15] is also another option that can
be considered, which has its own trade-offs [16], but such
explorations are reserved for future work.

IV. EXAMPLES

CAL can be deployed wherever data parallelism cannot be
exploited. Iterating over a distributed array while updating
another distributed array is an example of a situation where
CAL can be employed. Another example is when the user may
need to spawn remote tasks to perform a complex operation
of some distributed array. In the examples below, we show
how we go from the naive version to an aggregated one.1 As a
disclaimer, the code examples provided are generally simplified
from the actual implementation, and merely serve as high-level
descriptions of the algorithms used.

A. Histogram

For this example, we use a modified version of Chapel’s
study on distributed histograms [17]. Consider the situation
where you have one distributed array that contains values that
you wish to count by category such as by occurrence. As
well, assume that the table that keeps track of the number of
occurrences for each category is also distributed. Now assume
that both the array of values and the array of occurrences are
distributed differently, making the access pattern irregular.

1We leave out the final flush of the buffer as it is handled in the exact same
way as shown in Section II-A

1 // Distributed table of occurrences
2 const tableSpace = {0..#tableSize};
3 const tableDomain = tableSpace
4 dmapped Cyclic(startIdx=tableSpace.low);
5 var table : [tableDomain] atomic int;
6 // Distributed values to categorize
7 const valueSpace = {0..#numValues};
8 const valueDomain = valueSpace
9 dmapped Block(valueSpace);

10 var values : [valueDomain] int;

Furthermore, the array of values can be randomized so that
their values are valid indices into the table of occurrences.

1 fillRandom(values);
2 forall value in values {
3 value = mod(value, tableSize);
4 }

Accessing the histogram in a naive fashion is straight-
forward.

1 forall value in values {
2 table[value].add(1);
3 }

In Chapel, iterators are implemented by every iterable data
type, and in the case of Chapel’s distributions like Block and
Cyclic , they spawn a task on each core on each locale where

each task will yield elements hosted on that locale by reference.
While the iterator is ideal in situations where we have data
parallelism, such as when operating on the reference directly,
it is inefficient when accessing remote memory, such as to
increment the count of occurrences in the table.

Accessing the histogram using CAL isn’t as straight-forward,
but it is easy to reason about. First, we define a small function to
handle the buffer, which will perform coalescing and processing
of the buffer on the target locale. Coalescing is performed by
locally combining all repeated occurrences. After coalescing,
the original buffer is no longer required and can be recycled
for later use. Finally, the new coalesced buffer, which could
be smaller than the original, is copied and processed remotely.

1 proc handleBuffer(buf : Buffer(int), loc : locales) {
2 // Coalesce the multiple increments
3 var subdom = tableDomain.localSubdomain(loc);
4 var occurrences : [subdom] int;
5 for idx in buf do counters[idx] += 1;
6

7 // Finished coalescing buffer... Recycle buffer...
8 buf.done();
9

10 // Dispatch coalesced data on target locale
11 on loc {
12 // Copies occurrences array in bulk to target locale
13 var _occurences = occurences;
14 for (cnt, idx) in zip(_occurences,
15 _occurencies.domain) {
16 if cnt > 0 then table[idx].add(cnt);
17 }

18 }
19 }

Then we perform iteration, in parallel, over the distributed
array of values in a similar fashion, but we wrap it in a ‘sync‘
block so that we wait for all spawned tasks to finish before
proceeding (this is a form of termination detection [18]). This
is required as, even though the forall loops wait for its
spawned tasks to finishes, they do not wait for asynchronous
tasks spawned in their scope to finish. When the buffer is full
we spawn an asynchronous task via Chapel’s begin construct
to handle flushing the buffer.

1 var aggregator = new Aggregator(int);
2 sync forall value in values with (in aggregator) {
3 const loc = table[value].locale;
4 var buf = aggregator.aggregate(value, loc);
5 if buf != nil then begin handleBuffer(buf, loc);
6 }

B. Dual Hypergraph Generation

In more complex irregular applications where remote ac-
cesses are not as simple as an increment of an atomic
counter, such as one which requires spawning a remote task to
accomplish, is where CAL shows its utility and truly shines.
Graph generation is an application that is the subject of
numerous publications and studies and has many uses such as
the study of community structure [19]. CAL was originally
developed for hypergraph generation, so we use it as our next
example. A hypergraph [20] is a generalization of a graph that
allows edges to contain any number of vertices; a graph is a
hypergraph where edges connect exactly two vertices. A dual
hypergraph is a hypergraph that allows vertices to contain any
number of edges, with the constraint that if a vertex connects
to an edge then that edge also connects back to that vertex. Put
simply, a dual hypergraph provides a bidirectional mapping
from vertices and edge.

As contention is unlikely due to the random sampling of
vertices and edges, we make use of a Test-and-Test-and-Set
spinlock over Chapel’s sync variable due to the favorable
performance under low contention.

1 record SpinLock {
2 var lock : chpl__processorAtomicType(bool);
3

4 proc acquire() {
5 // Fast path
6 if lock.testAndSet() == false then return;
7 // Slow path
8 while true {
9 var ret = lock.peek();

10 if ret == false && lock.testAndSet() == false {
11 return;
12 }
13 chpl_task_yield();
14 }
15 }
16 proc release() {
17 lock.clear();

18 }
19 }

For this example, we use an adjacency list to represent the
neighbors of each vertex and edge.

1 record Edge {
2 var verticesDom = {0..-1};
3 var vertices : [verticesDom] int;
4 var lock : SpinLock;
5

6 proc addVertex(v) {
7 lock.acquire();
8 vertices.push_back(v);
9 lock.release();

10 }
11 }
12

13 record Vertex {
14 var edgesDom = {0..-1};
15 var edges : [edgesDom] int;
16 var lock : SpinLock;
17

18 proc addEdge(e) {
19 lock.acquire();
20 edges.push_back(e);
21 lock.release();
22 }
23 }

As each connection, or inclusion, between an edge and vertex
requires adding each to the others’ adjacency list, we distribute
both over non-intersecting sets of locales.

1 const vertexSpace = {0..#numVertices};
2 const vertexDom = vertexSpace dmapped Block(
3 boundingBox=vertexSpace,
4 targetLocales = Locales[0..numLocales by 2]
5);
6 var vertex : [vertexDom] Vertex;
7

8 const edgeSpace = {0..#numEdges};
9 const edgeDom = edgeSpace dmapped Block(

10 boundingBox = edgeSpace,
11 targetLocales = Locales[1..numLocales by 2]
12);
13 var edge : [edgeDom] Edge;

We use a fast bipartite hypergraph variant of Erdős-Rényi
[21], [22], originally introduced for graphs in [23]. In the
algorithm, we compute the number of inclusions to generate
to between vertices and edges selected at random with
replacement.2 For each random vertex and edge selected, we
add them to each others’ adjacency list. For simplicity, we
create two distributed arrays of the same shape and fill them
both with random values to zip over. In Chapel, zipping over
two arrays of the same shape and distribution will create tuples
containing pairs of elements from the arrays, described in more
detail in [25].

2In a real-world application, one may require a “coupon-collectors adjust-
ment" [24], which we omit for brevity.

1 var space = {0..#numInclusions};
2 var dom = space dmapped Block(space);
3 var verticesRNG : [dom] real;
4 var edgesRNG : [dom] real;
5 fillRandom(verticesRNG);
6 fillRandom(edgesRNG);
7

8 forall (vRNG, eRNG) in zip(verticesRNG, edgesRNG) {
9 var v = round(vRNG * (numVertices - 1)) : int;

10 var e = round(eRNG * (numEdges - 1)) : int;
11 on vertex[v] do vertex[v].addEdge(e);
12 on edge[e] do edge[e].addVertex(v);
13 }

While iterating over the already-computed random values is
efficient, accessing random indices in two separate distributed
arrays is not. By making use of Chapel’s “data-driven” on-
clauses, we can move the computation to the locale where
the data is hosted rather than performing multiple PUT and
GET operations. However since on statements are entirely
synchronous, the edge must be added to the adjacency list of
the vertex before the vertex can be added to the adjacency list
of the edge. While it is possible to make these asynchronous,
the overhead of remote task creation and migration, the size
of the tasks themselves, and the sheer number of tasks can
quickly overwhelm the cluster.

In the aggregated case, we can aggregate data destined
for each locale using the Aggregator as expected. First, we
determine the type of data we wish to aggregate, which in this
case would be the vertex and edge. Since we are aggregating
data to both vertices and edges, we also create a descriptor to
differentiate between them.

1 enum Inclusion {
2 Vertex,
3 Edge
4 }
5

6 type dataType = (int, int, Inclusion);

As well, we define the handler for the buffer, which will
handle adding to the adjacency list of the specified vertex or
edge. Note that we do not perform coalescing as the chance
of there being multiple insertions into the adjacency list of
the same vertex or edge in a single buffer is very small, and
shrinks as the graph we’re trying to generate GETs larger.

1 proc handleBuffer(buf : Buffer(dataType),
2 loc : locale) {
3 on loc {
4 forall (src, dest, srcType) in buf {
5 select srcType {
6 when Vertex {
7 vertex[src].addEdge(dest);
8 } when Edge {
9 edge[src].addVertex(dest);

10 }
11 }
12 }
13 buf.done();

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16 32

T
im

e
 (

s
e
c
o
n
d
s
)

Locales

Histogram (uGNI w/ 16MB Hugepages)

RA
NA

Aggregated

(a) uGNI Histogram

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8

T
im

e
 (

s
e
c
o
n
d
s
)

Locales

Histogram (GASNet w/ Aries)

Fast
Aggregated

(b) GASNet Histogram

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16 32

T
im

e
 (

s
e
c
o
n
d
s
)

Locales

Erdos Renyi (uGNI w/ 16MB Hugepages)

Naive
Aggregated

(a) uGNI Erdos Renyi

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16 32

T
im

e
 (

s
e
c
o
n
d
s
)

Locales

Erdos Renyi (GASNet w/ Aries)

Naive
Aggregated

(b) GASNet Erdos Renyi

14 }
15 }

Finally, we iterate over the zip of both pre-computed
random numbers like in the naive.

1 forall (vRNG, eRNG) in zip(verticesRNG, edgesRNG) {
2 const v = round(vRNG * (numVertices - 1)) : int;
3 const vLoc = vertex[v].locale;
4 const vData = (v, e, Inclusion.Vertex);
5 var vBuf = aggregator.aggregate(vData, vLoc);
6 if vBuf != nil then begin handleBuffer(vBuf, vLoc);
7

8 const e = round(eRNG * (numEdges - 1)) : int;
9 const eLoc = edge[e].locale;

10 const eData = (e, v, Inclusion.Edge);
11 var eBuf = aggregator.aggregate(eData, eLoc);
12 if eBuf != nil then begin handleBuffer(eBuf, eLoc);
13 }

V. EVALUATION

Performance benchmarks are performed on Intel Broadwell
compute nodes of a Cray-XC50 cluster. For the communication
layer, we use both uGNI with 16MB hugepages and GASNet
with the Aries substrate and ‘fast’ segment. For the tasking
layer, we use qthreads as it is the most optimized and

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

2
10

2
12

2
14

2
16

2
18

2
20

T
im

e
 (

s
e
c
o
n
d
s
)

Buffer Sizes

Erdos Renyi (32 Locales) - Variable Buffer Sizes

Aggregator

(a) Erdos Renyi at 32 locales with
variable buffer sizes (uGNI)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

2
10

2
12

2
14

2
16

2
18

2
20

T
im

e
 (

s
e
c
o
n
d
s
)

Buffer Sizes

Histogram (32 Locales) - Variable Buffer Sizes

Aggregator

(b) Histogram at 32 locales with
variable buffer sizes (uGNI)

Strong Scaling

Aggregator

 1 2 4 8 16 32

Locales 1 2 4 8 16 32

Threads

 0

 5x10
8

 1x10
9

 1.5x10
9

 2x10
9

 2.5x10
9

O
p
e
ra

ti
o
n
s
 p

e
r

S
e

c
o
n
d

Fig. 6: Aggregation with varying locales and threads per locale

 6x10
6

 8x10
6

 1x10
7

 1.2x10
7

 1.4x10
7

 1.6x10
7

 1.8x10
7

 2x10
7

 2.2x10
7

 2.4x10
7

 2.6x10
7

 1 2 4 8 16 32

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c
o

n
d

Threads

Weak Scaling

Aggregator

Fig. 7: Aggregation at single locale showing contention

highest performance tasking layer available. For the memory
management layer, we use jemalloc as it provides the most
performance. All benchmarks have been tested using Chapel
pre-release version 1.18.0, hash 732b550d52. We compile the
benchmarks with the --fast flag, which instructs the Chapel
compiler to perform all optimization on the Chapel source
code, turn off any and all safety run-time checks such as out-
of-bounds checking, and optimizes the generated C code, which
Chapel gets compiled down to, with the highest optimization
settings for the C compiler used. We allocate compute nodes,
each with 44 cores, by powers of 2 up to 32 nodes, and so
performance results are presented in a logarithmic base-2 scale.

A. Histogram

For our first benchmark, we use the histogram examples
shown in Section IV-A and show the performance of both naive
and aggregated implementations under various configurations.
The naive histogram relies heavily on the performance of
remote atomic operations, which the uGNI communication
layer will make use of network atomics, which are implemented
with atomic memory operators, or AMO, descriptors which

perform remote direct memory access, or RDMA, that bypass
the hardware that normal put and get operations go through.
In other words, network atomics are extremely well optimized
by the hardware and the uGNI communication layer. When
not using network atomics, the Chapel compiler turns on
statements which do not require synchronization or commu-
nication into fast on statements. These fast on statements,
which are executed on the dedicated progress threads instead
of becoming its own task, are labeled as RA. Finally, the
aggregated performance is labeled as Aggregated. The portion
of the code being profiled in this benchmark is the incrementing
of the atomic counters in the table, and the aggregated and
coalesced version. The performance results are shown in Fig. 3a,
and RA shows degrading performance as we increase the
number of locales, showing no signs of weak scaling. NA shows
a considerable boost in overall performance by approximately
25 times over RA at 32 locales, but plateaus and also shows no
signs of weak scaling. Aggregated not only beats RA by almost
two orders of magnitude, but also beats NA by approximately
4 times.

Unfortunately, GASNet, even with the Aries substrate and
fast segments, significantly lags behind uGNI in terms of
communication in general, but aggregation and coalescing using
CAL seems to fix this problem. Even though GASNet uses
Aries, it does not yet support network atomics, and so it settles
for fast on statements, labeled as Fast. As shown in Fig. 3b,
performance is significantly worse, and due to issues that are
likely with the implementation of the GASNet communication
layer, the benchmark could not complete without crashing
after 8 locales.3 Aggregated shows that regardless of the
communication layer used, CAL proves to significantly improve
overall performance.

B. Erdős-Rényi

For this benchmark, we are testing non-trivial operations
which require the use of task migration for even reasonable per-
formance. In this case, we cannot use any specialized hardware
or optimization like AMOs and RDMA. This type of benchmark
tests the benefits of aggregating multiple units of data and
coalescing them into active message. The naive version is
labeled Naive and the aggregated version is labeled Aggregated.
As can be seen in Fig. 4a and Fig. 4b, aggregation not only
enables the code to scale, but it also reduces the significant
jump in execution time due to introducing communication at
2 locales, as the amount of communication is greatly reduced.
GASNet is still slower than uGNI at first, but begins to catch up
at 32 locales, and uGNI shows a plateau at 16 locales, likely due
to the bottleneck of communication. Aggregated beats GASNet
Naive by over two orders of magnitude at approximately 180
times, and almost beat uGNI Naive by almost two orders of
magnitude at approximately 70 times. Erdős-Rényi helps to
highlight the issue of fine-grained communication as there is
hardly any contention due to the random selection of vertices
and edges.

3This is the exact same benchmark that is executed with uGNI.

C. Aggregation Buffer Sizes

In the above benchmarks, we use an arbitrary constant buffer
size of 1M elements. In the following benchmark, we test the
performance of the Aggregator with variable buffer sizes from
powers of two between 21̂0 to 22̂0 at 32 locales to determine
how performance varies based on the size of the buffer.4 For
the Histogram, shown in Fig. 5b, performance significantly
improves when we jump 1024 to 4096 and plateaus onward.
For Erdős-Rényi, shown in Fig. 5a, we see a significant spike
in execution time between 32K to 256K, before returning to
normal. This is likely due to the maximum amount of data that
gets sent over the network at any given time and shows that
even though CAL is easy to use, careful profiling is required
for obtaining the most optimal performance.

D. Overhead of Aggregation

In this benchmark, we extract the raw performance CAL by
profiling the overhead of aggregating data. When the Buffer
is returned from the Aggregator , we immediately invoke
done() and continue aggregating, eliminating the overhead

of any communication. The results shown in Fig. 6 show the
scalability of the aggregation across multiple locales in the best
case. Also analyzed is the performance at one locale shown in
Fig. 7, which shows raw contention on the buffer and shows
a scalability bottleneck. It is believed that this is caused by
a combination of false sharing and poor NUMA locality, as
Chapel currently does not offer satisfactory NUMA-awareness
tools.

VI. DISCUSSION

CAL significantly improves benchmarks involving irregular
access patterns, which is currently being studied in Chapel.
On Cray’s Aries NIC and uGNI communication layer, network
atomics have hardware-specific support and so CAL is not
meant to compete with them; however, even in the case of
irregular access involving network atomics, CAL has proven
itself, and even more so in the cases where the user finds
themselves using remote execution.

While the Aggregator is meant to be minimal, it would
be more aesthetically pleasing if the user could provide their
own functions to be invoked to handle the buffer rather than
having to check and handle the buffer after each called to
aggregate. Once remote value forwarding is available for user
data types, the user will no longer need to explicitly specify
the forall-intent as in . To show the ideal look and feel of the
library, the histogram without coalescing can be seen below.

1 proc handleBuffer(buf : Buffer(int), loc : locale) {
2 on loc do forall idx in buf do table[idx].add(1);
3 }
4 var aggregator = new Aggregator(int, handleBuffer);
5 forall value in values {
6 aggregator.aggregate(value, table[value].locale);

4We lower the task stack sizes from the default 8MBs to 32KB to prevent
running out of memory.

7 }
8 aggregator.flush();

However, due to incomplete support for first-class functions,
forcing the user to handle aggregating the buffer is currently
the most reasonable approach. However, with better support
for first-class functions, it would enable things like automatic
flushing of the buffer based on a heuristic like time and rate
of change, similar to the AM++ framework.

The destination buffers in CAL are not performing as well
as they could, primarily due to the Aggregator ’s lack of
NUMA awareness. While Chapel offers a very rich set of
tools and abstractions for handling locality between compute
nodes, support for NUMA is currently in its experimental
phase. As Chapel does not yet support thread-local or task-local
storage, it is currently not possible to use per-thread buffers to
eliminate contention and the need for NUMA awareness. The
ideal solution would involve having NUMA-specific destination
buffers which would eliminate cache-line ping-ponging between
NUMA nodes that occur from performing atomic operations.

One future work is to integrate CAL into Chapel’s run-
time, where thread-local and task-local storage and NUMA
domains are accessible. There is also some incentive to examine
whether CAL can work cooperatively with the software cache to
avoid excessive invalidation due to its heavy usage of atomics.
Furthermore, automatic flushing can become significantly easier
and more efficient to implement with run-time support. Perhaps,
in the end, aggregation can become more of a first-class
construct instead of a user library.

VII. CONCLUSION

CAL provides a very simple and minimal approach to
aggregating and coalescing user-defined data. CAL can offer a
relatively low increase in program complexity compared to the
significant performance improvement it brings. The library is
written entirely in Chapel and as such makes use of the rich
features and language constructs that Chapel offers, while also
working with language constructs to make CAL as easy to use
as possible. While there are issues with the language, such
as the lack-luster support for first-class functions to prevent
automatic flushing, in the future the library may be improved
and integrated into the language itself as a first-class construct
assuming significant demand. CAL will soon be released as an
open source library either as a ‘package’ module or a mason
third-party module.

ACKNOWLEDGMENT

We would like to thank Brad Chamberlain (Cray Inc.) for
providing insight and valuable comments that impacted this
work significantly. Furthermore, we would like to thank Cray
Inc., and especially the Chapel development team, for providing
computational resources to perform experiments shown in this
paper.

REFERENCES

[1] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability
and the Chapel Language,” Int. J. High Perform. Comput. Appl., vol. 21,
no. 3, pp. 291–312, Aug. 2007.

[2] “The Chapel Parallel Programming Language,” https://chapel-lang.org/,
Jul. 2018.

[3] U. Consortium et al., “UPC language specifications v1. 2,” 2005.
[4] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “AM++:

A generalized active message framework,” in Proceedings of the 19th
international conference on Parallel architectures and compilation
techniques. ACM, 2010, pp. 401–410.

[5] T. Von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
messages: a mechanism for integrated communication and computation,”
in ACM SIGARCH Computer Architecture News, vol. 20, no. 2. ACM,
1992, pp. 256–266.

[6] D. Bonachea and J. Jeong, “Gasnet: A portable high-performance
communication layer for global address-space languages,” CS258 Parallel
Computer Architecture Project, Spring, 2002.

[7] D. Bonachea and P. Hargrove, “GASNet Specification, v1. 8.1,” 2017.
[8] Y. Sun, G. Zheng, L. V. Kale, T. R. Jones, and R. Olson, “A

uGNI-based Asynchronous Message-driven Runtime System for Cray
Supercomputers with Gemini Interconnect,” in Parallel & Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International. IEEE,
2012, pp. 751–762.

[9] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for
programming with millions of lightweight threads,” 2008.

[10] P. Argyroudis and C. Karamitas, “Exploiting the jemalloc memory
allocator: Owning FirefoxâĂŹs heap,” Blackhat USA, 2012.

[11] M. P. Ferguson and D. Buettner, “Caching Puts and Gets in a PGAS
language runtime,” in 2015 9th International Conference on Partitioned
Global Address Space Programming Models (PGAS). IEEE, 2015, pp.
13–24.

[12] E. Kayraklioglu, M. Ferguson, and T. El-Ghazawi, “LAPPS: Locality-
Aware Productive Prefetching Support for PGAS ,” ACM Transactions
on Architecture and Code Optimization (TACO), 2018.

[13] L. Jenkins, “RCUArray: An RCU-Like Parallel-Safe Distributed Resizable
Array,” in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2018, pp. 925–933.

[14] “Quiescent-State Based Reclamation - Overhaul [W.I.P],” https://github.
com/chapel-lang/chapel/pull/8842.

[15] M. M. Michael, “Hazard pointers: Safe memory reclamation for lock-free
objects,” IEEE Transactions on Parallel & Distributed Systems, no. 6,
pp. 491–504, 2004.

[16] T. E. Hart, P. E. McKenney, and A. D. Brown, “Making lockless
synchronization fast: Performance implications of memory reclamation,”
in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International. IEEE, 2006, pp. 10–pp.

[17] “test/studies/bale/histogram/histo-atomics.chpl,”
https://github.com/chapel-lang/chapel/blob/
25bf5188b904300f444524198b7a9faba9b00180/test/studies/bale/
histogram/histo-atomics.chpl.

[18] E. W. Dijkstra, W. H. Feijen, and A. M. Van Gasteren, “Derivation of a
termination detection algorithm for distributed computations,” in Control
Flow and Data Flow: concepts of distributed programming. Springer,
1986, pp. 507–512.

[19] S. G. Aksoy, T. G. Kolda, and A. Pinar, “Measuring and Modeling
Bipartite Graphs With Community Structure,” Journal of Complex
Networks, vol. 5, no. 4, pp. 581–603, mar 2017.

[20] C. Berge, Hypergraphs: Combinatorics of Finite Sets. Elsevier, 1989.
[21] J. C. Miller and A. Hagberg, “Efficient Generation of Networks with

Given Expected Degrees,” in Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2011, pp. 115–126.

[22] M. Winlaw, H. DeSterck, and G. Sanders, “An In-Depth Analysis
of the Chung-Lu Model,” Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), Tech. Rep., 2015.

[23] P. Erdos and A. Rényi, “On the evolution of random graphs,” Publ. Math.
Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[24] T. G. Kolda, A. Pinar, T. Plantenga, and C. Seshadhri, “A Scalable
Generative Graph Model with Community Structure,” SIAM Journal on
Scientific Computing, vol. 36, no. 5, pp. C424–C452, jan 2014.

[25] B. L. Chamberlain, S.-E. Choi, S. J. Deitz, and A. Navarro, “User-defined
parallel zippered iterators in Chapel,” in Proceedings of Fifth Conference

https://chapel-lang.org/
https://github.com/chapel-lang/chapel/pull/8842
https://github.com/chapel-lang/chapel/pull/8842
https://github.com/chapel-lang/chapel/blob/25bf5188b904300f444524198b7a9faba9b00180/test/studies/bale/histogram/histo-atomics.chpl
https://github.com/chapel-lang/chapel/blob/25bf5188b904300f444524198b7a9faba9b00180/test/studies/bale/histogram/histo-atomics.chpl
https://github.com/chapel-lang/chapel/blob/25bf5188b904300f444524198b7a9faba9b00180/test/studies/bale/histogram/histo-atomics.chpl

on Partitioned Global Address Space Programming Models, 2011, pp.
1–11.

	Introduction and Related Work
	Design
	Minimalism
	Distributed
	Parallel-Safe

	Implementation
	Examples
	Histogram
	Dual Hypergraph Generation

	Evaluation
	Histogram
	Erdős-Rényi
	Aggregation Buffer Sizes
	Overhead of Aggregation

	Discussion
	Conclusion
	References

