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Abstract—Presented in this work is RCUArray, a parallel-safe
distributed array that allows for read and update operations
to occur concurrently with a resize via Read-Copy-Update. Also
presented is a novel extension to Epoch-Based Reclamation (EBR)
that functions without the requirement for either Task-Local or
Thread-Local storage, as the Chapel language currently lacks
a notion of either. Also presented is an extension to Quiescent
State-Based Reclamation (QSBR) that is implemented in Chapel’s
runtime and allows for parallel-safe memory reclamation of
arbitrary data. At 32-nodes with 44-cores per node, the RCUAr-
ray with EBR provides only 20% of the performance of an
unsynchronized Chapel block distributed array for read and
update operations but near-equivalent with QSBR; in both cases
RCUArray is up to 40x faster for resize operations.

I. INTRODUCTION AND BACKGROUND

Chapel’s arrays and distributions have a robust and complex
design with generality at its core and while they host a
wide variety of operations they are not parallel-safe while
being resized. Mutual exclusion provides an easy solution but
inhibits scalability and introduces problems such as deadlock,
priority inversion, and convoying [6], [8]. Reader-writer locks
take a step in the right direction by allowing concurrent
readers, but have the drawback of enforcing mutual exclusion
with a single writer. Scalability is only half the battle as the
root of many problems in the design of high-performance data
structures is memory reclamation; caution must be used in
the reclamation of memory that may be accessed concurrently
in a language without garbage collection. Mechanisms such
as Hazard Pointers [14] can provide a safe non-blocking ap-
proach for memory reclamation with a balanced but noticeable
overhead to both read and write operations. These mechanisms
ensure high throughput for most non-blocking data structures
but are unsuitable when the performance of reads is far more
important than the performance of writes. Furthermore, the
mechanisms require some notion of task-local or thread-local
storage, which the Chapel language currently lacks.

Read-Copy-Update (RCU) [10] and in particular the
userspace variant [4] is a more recent type of synchronization
strategy which allows parallel-safe reads during a write, of-
fering significant improvements in performance over locking
[12]. It is not without drawbacks, as writers must perform
the task of memory reclamation by waiting for all readers to
evacuate by finishing their operation. RCU can come in two
flavors: Epoch-Based Reclamation (EBR) [5] which requires
readers to enter read-side critical sections in which they indi-
cate that they are accessing the protected data, and Quiescent

State-Based Reclamation (QSBR) [15] in which readers must
periodically invoke checkpoints to explicitly notify that they no
longer have access to the protected data. QSBR comes with the
benefit of ensuring that readers may proceed without overhead,
but it is entirely application-dependent as strategic placement
of checkpoints is required. EBR comes with a small overhead
of forcing readers to make use of memory barriers, but can
be implemented in a much wider variety of applications [7].
Unfortunately both known variants of RCU require the usage
of thread-local or task-local storage (TLS).

In this work I present RCUArray, a distributed array that
may be used in place of Chapel’s arrays and distributions that
provides an additional feature: parallel-safe resizing. I also
present a novel extension to RCU based on EBR that does not
require thread-local or task-local storage and provides scalable
perfomance but at the cost of additional overhead for read and
update operations. Finally I also present an implementation
of QSBR in Chapel’s runtime that can be used to perform
memory reclamation on arbitrary data and comes without
overhead either for read and update operations.

II. RELATED WORK

Applications of RCU can be seen in various data structures
such as linked lists, balanced trees [2] and hash tables [17]. To
allow greater concurrency for write operations, an extension
to RCU called Read-Log-Update [11] provides an interesting
solution by borrowing concepts from software transactional
memory [16] to allow for multiple concurrent writers via
means of write logs to provide isolation, conflict detection
and resolution. Another extension is Predicate RCU [1] which
makes use of a user-supplied predicate to determine whether
a writer should wait for a concurrent reader. Another related
work that provides a resizable array is from Damian et al. [3]
who presented a lock-free resizable array used as a vector that
makes use of a helping algorithm and operation descriptors.
While there are related efforts on the application of RCU in
data structures, in the research and development of thread-safe
resizable arrays, and in the deployment of RCU in a distributed
context [13], there are none to the author’s knowledge that
combine the application of all three.

III. DESIGN

RCUArray is simple in design but overcomes three core
challenges: (1) parallel-safe memory reclamation; (2) con-
currency of read and update operations even while the data



2

Fig. 1: Example RCUArray resize operation. At t1 there is a reader R that is using the current GlobalSnapshot s to access the
block b1. At t2 a writer has acquired the cluster WriteLock, has performed its clone operation on s to produce s′, appended
the new block b2 to s′, and has set the current GlobalSnapshot to s′. While the writer was waiting for R to finish its operation
on s, a new reader R′ begins its operation on s′. R finishes its operation at t3 and the writer safely reclaims s and releases
the WriteLock at t4.

structure is in the process of being resized; and (3) distribution
across multiple nodes in a cluster.

Listing 1 displays the two data types and their fields that
are used in the array but only the ones that are used in both
implementations will be covered in this section. Both data
types are privatized1 and many of their fields are mutated
in a manner that is node-local and independent of other
privatized copies. The privatization id, PID, is a descriptor
used to access the privatized instance allocated on each node.
GlobalSnapshot is the current snapshot2 of metadata; Each
snapshot of metadata is an RCUArraySnapshot, equivalent to
an array of blocks where each block is an array with a capacity
of BlockSize. WriteLock is a cluster-wide lock, in this case
a lock that is wrapped in some class allocated on a single
node, used to provide mutual exclusion with respect to all
nodes during resize operations. NextLocaleId is used as a naive
counter to handle distributing the allocation of blocks across
multiple nodes in a block distributed fashion.

A. Epoch-Based Reclamation of Snapshots

Epoch-Based Reclamation (EBR) is a strategy where con-
current readers must pass through a barrier to enter what is
called a read-side critical section which ensures that a con-
current writer does not reclaim the memory we are interested
in until appropriate, detailed in Algorithm 1. An epoch is
a version number that corresponds to a snapshot, and each
node maintains the current epoch, GlobalEpoch, which is an
atomic monotonically increasing counter. A reader must notify

1A shallow copy of the object is allocated on each node to eliminate inter-
node communication.

2An immutable version of data.

Listing 1: Data Structure Types
Constants:

BlockSize : uint
RCUArrayMetaData:

PID : int
EpochReaders : [0..1] atomic uint
GlobalEpoch : atomic uint
GlobalSnapshot : RCUArraySnapshot
WriteLock : GlobalLock
NextLocaleId : int

RCUArraySnapshot:
Blocks : [0..-1] Block

potential writers of the epoch they are using to ensure that
reclamation of the respective snapshot is safely deferred. Due
to the lack of TLS, readers are unable to broadcast such
notifications individually and instead do so collectively using
a set of two atomic counters, EpochReaders. The parity of the
epoch determines which of the EpochReaders to use to record
the operation as in-progress, done by performing an atomic
increment, and later to record as finished, done by performing
an atomic decrement; a writer must wait until all recorded
in-progress operations are finished before it may reclaim the
corresponding snapshot. The EpochReaders become the point
of linearizability [9] where readers can ensure that they are
appropriately seen by a concurrent writer, ergo safe to proceed.

A parallel-safe write operation λ can be performed via
RCU Write. 3 As a writer W must ensure that each snapshot is
immutable, a clone of the current GlobalSnapshot s is created
as s′, the λ function is applied on s′, and s′ becomes the
new GlobalSnapshot (lines 1 – 4). To ensure s′ will become
immediately visible as the new GlobalSnapshot, W performs

3The WriteLock should be acquired prior to invoking RCU Write.
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Algorithm 1: RCU Pseudocode
// Applies a side-effect inducing function λ to protected data

proc RCU_Write (λ)
1 oldSnapshot← GlobalSnapshot;
2 newSnapshot← clone(oldSnapshot);

// Update performed on clone, clone becomes new snapshot
3 λ(newSnapshot);
4 GlobalSnapshot← newSnapshot;
5 epoch← GlobalEpoch.fetchAdd(1);

// Wait for readers...
6 readIdx← epoch % 2;
7 waitForReaders(readIdx);

// Safe to delete...
8 delete(oldSnapshot);

// Applies a function λ to protected data with a result
proc RCU_Read (λ)

9 while true do
// Attempt to record our read

10 epoch← GlobalEpoch.read();
11 readIdx← epoch % 2;
12 EpochReaders[readIdx].add(1);

// Did snapshot possibly change before we recorded?
13 if epoch = GlobalEpoch.read() then

// Safe to apply user function
14 retval← λ(GlobalSnapshot);
15 EpochReaders[readIdx].sub(1);
16 return retval;

// Try again
17 EpochReaders[readIdx].sub(1);

an atomic fetchAdd to update the current GlobalEpoch from
e to e′ = e + 1 and waits for all readers that recorded their
operation for e (lines 5 – 7). Only after all recorded operations
have evacuated can W reclaim s (line 8).

A parallel-safe read operation λ can be performed via
RCU Read. As operations must be performed collectively,
the act of recording the operation is divided into two steps:
incrementing and verification. A reader R first reads the cur-
rent GlobalEpoch e and increments the EpochReaders counter
based on the parity of e (lines 10 – 12). It is possible that
a concurrent writer W will change the GlobalEpoch from e
to e′ after R′s read but prior to R′s increment, which may
cause W to not see nor wait for R′s operation to finish
before performing memory reclamation. While R will see the
snapshot s set by W , a future writer W ′ will also fail to see
R′s operation as W ′ will be waiting for readers who recorded
based on the parity of e′ and may end up reclaiming s while
R is applying its λ operation. To remedy this R performs
a verification check to determine whether the GlobalEpoch
has changed values between our read and increment (line 13).
If there has been a change in the GlobalEpoch, such as the
above scenario where GlobalEpoch has changed from e to
e′, R would see that e 6= e′ and would undo the operation
(line 17) and loop again (line 9). If there has not been a
change in the GlobalEpoch, then R has linearized. R applies
its λ operation to the current GlobalSnapshot, decrements
the appropriate EpochReaders counter, and returns the result
obtained from the λ (line 14 – 16).

Correctness of the algorithm can be proven further by means
of the following 3 lemmas:

Lemma 1. There will be at most two active snapshots at any
given time.

Proof Sketch: Given a writer W that has acquired the

WriteLock, if W updates the GlobalSnapshot from s to s′ at
time t, a concurrent reader R that linearized prior to t will
see s but a concurrent reader R′ that linearized after t will
see s′, hence there are the two active snapshots: s and s′. W
must wait for R to evacuate before it may reclaim s, and only
then can W release the WriteLock, leaving only one active
snapshot: s′.

Lemma 2. Two EpochReaders are sufficient for ensuring safe
memory reclamation of snapshots, even in the event of integer
overflow of the GlobalEpoch.

Proof Sketch: As there can be only two active snapshots
at any given time, s and s′, we can associate to them their
respective epochs, e and e′. As the GlobalEpoch is monoton-
ically increasing, e′ = e + 1, hence e and e′ are of different
parity. If we represent epochs as N-bit integers, we can then
represent them as the binary string B = (b1, b2, ..., bN ) where
∀b ∈ B, b ∈ {0, 1} and where b1 is the least significant bit. If
we have e = (1, 1, ..., 1) being the largest possible value, and
e′ = e+ 1 = (0, 0, ..., 0) overflowing to the smallest possible
value, the parity is still preserved and so is the correctness of
the EpochReaders.

Given the event of epoch overflow where a preempted
reader R reads the GlobalEpoch e at some time t and the
GlobalEpoch overflows back to the value of e at some time
t′ where t′ > t, correctness is still preserved. If we represent
epochs as 1-bit integers, given a scenario where a writer W
updates the GlobalEpoch e = 0 to e′ = 1, and another writer
W ′ updates GlobalEpoch e′ = 1 to e′′ = 0, if R increments the
EpochReaders associated with e and performs its verification
check, it will succeed since e = e′′ = 0. As W ′ will only wait
on readers that have recorded for e′ = 1, it will not wait for
R, but in this case R will see the snapshot s set by W ′ which
is safe since a future writer W ′′ that updates GlobalEpoch
e′′ = 0 to e′′′ = 1 will wait on R as e = e′′ = 0 before
reclaiming s.

Lemma 3. After a reader R has recorded and verified its
operation, it may safely access the current GlobalSnapshot
without it being reclaimed.

Proof Sketch: Given a writer W that acquires the
WriteLock at a time tacq , releases the WriteLock at a time
trel, updates the GlobalSnapshot from s to s′ at a time
ts ∈ (tacq, trel) and updates the GlobalEpoch from e to e′

at a time te ∈ (ts, trel), and a reader R that linearizes at some
time t ∈ [tacq, trel]: if t ∈ [tacq, ts) then R will see s and e;
if t ∈ [ts, te) then R will see s′ and e; if t ∈ [te, trel] then R
will see s′ and e′. Note that it is safe for R to operate on s
when it has recorded for e, and safe to operate on s′ when it
has recorded for e′, but it may not be so clear that it is safe
for R to operate on s′ when it has recorded for e. This is safe
as W will not reclaim s′ nor s, and while it does result in W
waiting on R unnecessarily it has no impact on safety.

B. Runtime Support for Quiescent State-Based Reclamation

Quiescent State-Based Reclamation (QSBR) is a strategy in
which all participants, whether reader, writer, or updater, must
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Algorithm 2: QSBR Pseudocode
// Defers memory reclamation of objs until safe

proc QSBR_Defer (objs)
1 tls← getTLS();

// Update and observe the new global state.
2 tls.ObservedEpoch← StateEpoch.fetchAdd(1) + 1;
3 tls.DeferList.push(objs, tls.ObservedEpoch);

// Handle memory reclamation for DeferList if eligible
proc QSBR_Checkpoint ()

4 tls← getTLS();
// Observe the current state.

5 tls.ObservedEpoch← StateEpoch.read();
// Find smallest (safest) epoch

6 minEpoch← tls.ObservedEpoch;
7 for tls′ in TLSList
8 minEpoch← min(tls′.ObservedEpoch,minEpoch)

// Split DeferList where the safe epoch ≤ minimum epoch.
9 head← tls.DeferList.popLessEqual(minEpoch);

10 while head 6= nil
11 tmp← head;
12 head← head.next;
13 delete tmp;

periodically invoke checkpoints to ensure eventual memory
reclamation. To generalize this concept, QSBR is decoupled
from RCU, is extended to make use of epochs in a manner
similar to EBR, and is implemented in Chapel’s runtime which
provides access to thread-local storage. An atomic monotoni-
cally increasing counter is maintained that denotes the epoch
as a state of the entire system, StateEpoch; whenever memory
is to be reclaimed the StateEpoch must be incremented to
reflect this state change, and during checkpoints all participants
must notify that they are seeing the newest state. All threads
act as participants and keep track of their own thread-specific4

metadata, which is also accessible via a linked list, TLSList.
Each time memory reclamation is desired, instead of waiting
for all other threads to invoke a checkpoint and risk entering
deadlock, we append the memory to be reclaimed to a list,
DeferList. To determine when it is safe to reclaim memory we
couple the safe epoch, the minimum epoch that all threads need
to observe for safe memory reclamation, to defer processing
at checkpoints. As the DeferList is thread-specific, memory
reclamation can be performed in a parallel-safe manner and
because it holds the safe epoch it can be traversed to determine
which objects are safe for memory reclaimation in a lockless
manner. A feature that is supported but not discussed in detail
in this work is the support for parking and unparking of threads
which occurs when a thread is idle without a task and is used
to cleanup its own DeferList, notify of its quiescence, and to
provide assistance with bookkeeping.

QSBR, formally described in Algorithm 2, can be used as a
general-purpose memory reclamation device with negligible
overhead, but does come with its share of downsides. For
example, it is not safe to dereference any memory managed by
QSBR if it has been acquired prior to a checkpoint or deferal of
memory reclamation, as this QSBR-protected memory could
have been marked for deletion by another thread. As well,
since Chapel tasks can be multiplexed on the same thread, they
can share the same TLS and it is not recommended that tasks

4Using thread-local storage to keep track of data that is owned by the
thread.

yield while intending to dereference memory that is QSBR-
protected, nor should it be used in any future tasking layers
that are preemptible. Lastly it is unclear whether checkpoints
should be injected by the compiler, placed at strategic points
in the runtime, or invoked manually by the user.

When memory is to be reclaimed via QSBR Defer, the
StateEpoch is atomically updated from e to e′ = e + 15,
notifying that the old state described by e is being discarded
in favor of the newer state described by e′. The current
thread T observes the new state e′, making the promise that
it has become entirely quiescent of the state described by
e or of any prior state (lines 1 – 2). The memory to be
reclaimed m is coupled with e′ as the safe epoch and is
pushed in Last-In-First-Out order on T ′s DeferList, deferring
further processing to T ′s next checkpoint (line 3). For future
convenience, DeferList entries are represented as the triple
(m, e, t) where m is the memory to be reclaimed, e is the
safe epoch, and t is the time of insertion into the DeferList6.

When a checkpoint is to be invoked via QSBR Checkpoint
by a thread T , T will observe the current StateEpoch e, making
a promise of quiescence of any state prior to e. (lines 4 – 5).
T will then find the minimum observed epoch emin of all
threads (lines 7 – 8). We then split the DeferList at the first
entry with a safe epoch less than or equal to emin and handle
deletion (lines 9 – 13).

Correctness of the algorithm can be proven further by means
of the following 2 lemmas:

Lemma 4. If StateEpoch does not overflow, DeferList is sorted
by safe epoch in descending order.

Proof Sketch: Given that StateEpoch is monotonically
increasing, insertions are handled sequentially on the same
thread, and that the previous head of the DeferList is (m, e, t),
if another entry (m′, e′, t′) is inserted into the list, then t′ > t
and therefore e′ > e as the safe epoch is always derived from
the StateEpoch. Since entries are inserted at the head in Last-
In-First-Out order, and since each successive insertion has a
larger safe epoch than its predecessor, the list is sorted in
descending order.

Lemma 5. Given a DeferList entry with safe epoch e, memory
reclamation is safe if emin ≥ e where emin is the minimum
observed epoch of all threads so long as StateEpoch does not
overflow.

Proof Sketch: Assume the opposite is true that it is not
safe to reclaim the DeferList entry. Given a DeferList entry
(m, e, t), if any thread T has invoked a checkpoint or deferred
memory for safe reclamation at some time tT , if tT > t then
T has observed some epoch eT such that eT ≥ emin and can
no longer access m after becoming quiescent. However for the
reclamation of m to be unsafe it would need to be accessible
by some thread T ′ such that it has observed some epoch eT ′

such that emin > eT ′ , but emin is the minimum observed
epoch of all threads, hence this is a contradiction.

5If e′ = e+ 1 were to result in overflow, the algorithm would be subject
to undefined behavior.

6The time t is only used to prove correctness of the design and is not
required in the actual implementation.
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C. Concurrent Updates and Resizing

To allow for update operations, which are assignments to
some indexable portion of the array,7 to attain performance
equivalent to that of a read operation, the λ can return a
reference8 to the desired portion of the array to be written
to later. This does not come without its own set of problems,
as it is possible for updates to a previous snapshot to be lost.
Given some updater U with some function that returns by
reference λ running concurrently with a writer W with some
function λ′, consider the scenario where U has appropriately
linearized and returned the reference r obtained by applying
λ to the current snapshot s at some time tret and performs a
non-zero amount of assignment through r at some time tfin.
If W clones s to create s′ at some time tcln ∈ [tret, tfin], then
U ′s assignment through r will be lost to s′, lost to λ′ as it is
applied to s′, and finally it will be lost to all future writers,
updater, and readers once s′ is set as the new GlobalSnapshot.

To prevent the loss of these updates, a clone of a snapshot
s will recycle the blocks in s when creating s′, depicted
in Figure 1. During the cloning process for a writer, each
block is recycled by the newer snapshot to ensure that any
updates to the older snapshot is visible via the indirection. This
indirection not only comes with very little cost to performance,
it also allows updates to share the same performance as
reads. Furthermore, recycling blocks of memory proves to be
significantly faster than copying by value into larger memory.

Correctness of the algorithm can be proven further by means
of the following lemma:

Lemma 6. Given a writer W , an updater U , and the Glob-
alSnapshot s, if W has started its clone on s to produce s′

and U performs a non-zero number of assignments through its
reference r to s, those assignments will be immediately visible
to s′.

Proof Sketch: Given that s is a snapshot with N blocks
represented by the sequence (b1, b2, ..., bN ), cloning s to create
a larger snapshot s′ with M blocks can be represented as
the sequence (b1, b2, ..., bN , bN+1, ..., bM ); that is s becomes
a subsequence of s′ where ∀i ∈ [1..N ] : s(i) = s′(i). Hence
any block that r refers to in s is also recycled in s′, and any
assignment that U performs through r will be visible to both
s and s′.

D. Distribution

Blocks of the array are distributed in a round-robin fashion
similar to a block-cyclic distribution.9 If a writer W performs
its function λ to change the GlobalSnapshot from s to s′,
this change can be propogated by replicating the operation
across all nodes in parallel. As a benefit of replicating these
operations across all nodes, both read and update operations
act mostly on node-local metadata, significantly improving

7All assignments are performed on the blocks of memory the array is
composed of.

8In languages that do not support references, this can be accomplished by
returning a pointer instead.

9More complex distribution patterns are beyond the scope of this work.

Algorithm 3: Implementation Pseudocode
// Indexes into array

proc Index (idx) ref
proc Helper (snapshot) ref

1 blockIdx← idx / BlockSize;
2 elemIdx← idx % BlockSize;
3 return snapshot.blocks[blockIdx][elemIdx];

4 pThis← chpl getPrivatizedCopy(PID);
5 if isQSBR then
6 return Helper(pThis.GlobalSnapshot);

7 else
8 return pThis.RCU Read(Helper);

// Expands the size of the array
proc Resize (size)

9 newBlocks : [1..0]Block;
10 WriteLock.acquire();
11 locId← NextLocaleId;

// Allocate and distribute new blocks
12 while size > 0
13 on Locales[locId] do
14 newBlocks.push back(newBlock());

15 locId← (locId+ 1) % numLocales;
16 size← size − BlockSize;

// Function to append blocks to snapshot
proc Helper (snapshot)

17 snapshot.blocks.push back(newBlocks);

// Update performed on each node
18 coforall loc in Locales do on loc
19 pThis← chpl getPrivatizedCopy(PID);
20 if isQSBR then

// Handle RCU directly with QSBR...
21 oldSnapshot← pThis.GlobalSnapshot;
22 newSnapshot← clone(oldSnapshot);
23 Helper(newSnapshot);
24 pThis.GlobalSnapshot← newSnapshot;
25 QSBR Defer(oldSnapshot);

26 else
27 pThis.RCU Write(Helper);

28 pThis.NextLocaleId← locId;

29 WriteLock.release();

their locality; their only required communication being PUT
and GET operations to distributed blocks of the array.10

IV. IMPLEMENTATION

The implementation of RCUArray makes use of either
EBR or QSBR, and the required changes in implementation
are minor and can be contained within a single conditional
using the compile-time parameter, isQSBR. As displayed in
Algorithm 3, the implementation makes use of Chapel-specific
constructs such as nested procedures which have access to
local variables declared in the scope of their parents, and the
combination of the ’coforall’ and ’on’ statements which spawn
a task on each node to run in parallel.

A. Indexing

Both read and update operations can be performed through
the reference returned via Index.11 The nested procedure
Helper is defined and used to identify both the block and the
offset being requested and return it by reference (lines 1 – 3).
After obtaining the privatized copy via the runtime function

10In Chapel, these PUT/GET operations are performed behind-the-scenes,
and so both readers and updaters are completely oblivious of all communica-
tion.

11For brevity, no checks for out-of-bounds are performed.
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chpl getPrivatizedCopy for the current task C (line 4), a check
is performed to determine the configuration of the RCUArray
(line 5). If configured to use QSBR, C will perform the Helper
operation directly on the node-local GlobalSnapshot as it will
not be reclaimed until C later invokes a checkpoint (line 6);
if not configured, C will instead invoke RCU Read on the
privatized copy with Helper as the λ function (line 8).

B. Resizing

Resizing is performed through Resize, which takes as ar-
gument the amount to expand the RCUArray.12 Making use
of Chapel’s syntax for defining arrays, an empty array B is
created to hold blocks used as temporary storage (line 9).
After the current task C acquires mutual exclusion (line 10),
C performs round-robin allocation of blocks and appends
each to B (lines 11 – 16). The nested procedure Helper is
defined and used to append B to the current snapshot (line
17). C then spawns a task C ′ on each node in the cluster
(line 18), C ′ obtains its privatized copy (line 19), and a check
is performed to determine the configuration of the RCUArray
(line 20). If configured to use QSBR, C ′ will clone the old
snapshot s of the privatized copy to create s′, C ′ will apply
the Helper function directly on s′ and set the GlobalSnapshot
of the privatized copy to s′, and finally C ′ will defer the
memory reclamation of s to QSBR Defer(lines 21 – 25). If
not configured for QSBR, C ′ will instead invoke RCU Update
on the privatized copy with Helper as the λ function (line
27). Finally C ′ will update the counter used for round-robin
allocation before completing (line 28). After C ′ completes,
C has also completed and will release mutual exclusion (line
29).

V. PERFORMANCE EVALUATION

Variants of RCUArray using QSBR (QSBRArray)13 and
EBR (EBRArray) were tested against each other, and when
appropriate against an unsynchronized naive block distributed
array using Chapel’s standard BlockDist distribution (Un-
safeArray). Compared are the performance of read, update, and
resizing operations. While UnsafeArray allows for concurrent
read and update operations, it is unable to allow concurrent
resize operations and so a safer variant is defined that uses
mutual exclusion via sync variables (SyncArray). All bench-
marks were performed using a subset of a Cray XC50 cluster
totaling 32-nodes, each node running Intel Xeon Broadwell
44-core processors; unless stated otherwise, results obtained
from a single-node will be excluded due to the regressions
in performance caused by introducing communications. All
benchmarks are compiled under a fork of Chapel 1.17 pre-
release,14 optimized via the ”--fast” flag, built with the qthread
tasking layer, and under the Cray Compiler Environment. For
maximum performance, the following relevant Cray modules
were loaded: cray-hugepages16M, craype, craype-network-
aries, and craype-broadwell.

12Only expansion by multiples of BlockSize will be covered in this work.
13QSBRArray does not make use of checkpoints and represents the best-

case.
14Forked after SHA 60bb637fa16772400ee702be4374427154080345
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Fig. 2: Random and Sequential Access

A. Indexing & Resizing

For the first and second benchmarks, ChapelArray, QS-
BRArray, EBRArray, and SyncArray all perform 1024 update
operations per task, with 44 tasks per locale, on randomized
and sequential indices of the array, shown in Figure 2a and
Figure 2b respectively. These benchmarks choose a smaller
number of operations to allow for SyncArray to finish within
a reasonable amount of time. As expected, SyncArray is
the slowest of all where not only does it not scale due to
mutual exclusion, but also degrades in performance due to
the increasing number of remote tasks that must contest for
the same lock. QSBRArray offers competitive performance to
the unsynchronized ChapelArray, slightly losing for random-
access patterns but offers near-equivalent performance for
more predictable access patterns. EBRArray proves to scale
relatively well but only offers approximately 40% of the
performance of ChapelArray and QSBRArray.

For the third and fourth benchmarks, ChapelArray, QS-
BRArray, and EBRArray15 all perform 1M update operations
per task, with 44 tasks per locale, on randomized and sequen-
tial indices of the array, shown in Figure 2c and Figure 2d
respectively. Unlike the former benchmarks, a larger number
of operations can be performed to obtain more precise and
accurate data. QSBRArray loses slightly to ChapelArray under
random-access patterns like before but exceeds ChapelArray
in performance when it comes to sequential-access patterns
by approximately 1.5x, likely due to the simplicity in design.
EBRArray this time offers less than 20% of the performance
of ChapelArray and QSBRArray.

For the fifth benchmark, ChapelArray, EBRArray, and QS-
BRArray perform a total of 1024 resize operations in incre-
ments of 1024, starting with zero-capacity and increasing to a
total capacity of 1M, shown in Figure 3. ChapelArray prove to
perform the slowest, with QSBRArray and EBRArray offering

15SyncArray is excluded due to required runtime
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Fig. 3: Resizing to 1M in 1024 increments

near-equivalent performance, exceeding ChapelArray by over
40x. Inherent in RCUArray’s novel design, both QSBRArray
and EBRArray can avoid the extra work required to deep-
copy blocks of memory from one smaller storage into a larger
storage, avoiding the risk of cache pollution.

B. QSBR Checkpoints

Checkpoints, invoked via QSBR Checkpoint, and their
strategic placement are crucial for not only correctness but
overall performance. To demonstrate the latter, a benchmark
is prepared that invokes a checkpoint after a fixed number
of RCUArray update operations, shown in Figure 4. In the
benchmark, we spawn 44 tasks per locale that each perform
1M operations with checkpoints invoked after a certain number
of operations. Contrary to other benchmarks, the performance
at one locale is shown as QSBR is more general-purpose and
is suitable for use for single and multiple locale applications.
The performance gathered from previous benchmarks for
EBRArray in Figure 2d are reused here and inserted as a
baseline of performance. As shown, QSBRArray and QSBR
in general exceeds the performance of the extension of the
EBR algorithm presented in this work, even in cases where
a checkpoint is invoked after each operation. This is likely
due to the contention and sequential consistency memory
ordering of the Fetch-And-Add and Fetch-And-Sub atomic
operations on the EpochReaders counters. Checkpoints can
have very little overhead by themselves, but when called with
enough frequency can become a bottleneck. Careful profiling
is required for determining the appropriate frequency; if too
few checkpoints are used, memory consumption may become
an issue; if too many checkpoints are used, performance may
become an issue.

VI. CONCLUSIONS AND FUTURE WORK

Presented in this work is the RCUArray, a parallel-safe
distributed array that allows concurrent read and update op-
erations while being resized. Also presented is an extension

QSBR
EBR
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Fig. 4: Overhead of checkpoints

to Epoch-Based Reclamation that does not rely on thread-
local or task-local storage and provides a guarantee on a
constant space overhead. Also presented is an extension to
Quiescent State-Based Reclamation that is introduced into
Chapel’s runtime that makes use of thread-local metadata,
epochs, and checkpoints to determine the safe reclamation of
arbitrary data. The RCUArray allocates memory in blocks of
a predetermined size that can be distributed across multiple
nodes, enabling the recycling of memory. RCUArray relaxes
RCU reads to return by reference to allow for updates, and
uses the indirection of using blocks of memory to allow
for proper privatization of data and to ensure visibility of
updates across different nodes and snapshots. The RCUArray
under EBR suffers from the lack of thread-local and task-
local storage and as such can offer as little as 20% of the
read and update performance of an unsynchronized Chapel
block distributed array, but under QSBR it can offer near-
equivalent or slightly superior performance; RCUArray under
both memory reclamation algorithms can offer as much as 40x
performance for resizing.

While the EBR algorithm demonstrated in this work is
slower than the QSBR algorithm, it may work independent of
changes to the runtime and establishes correctness even under
integer overflow. In future work, the decoupling of EBR from
RCUArray can be performed easily, and future improvements
to the decoupled EBR algorithm are planned and can even
be used in other languages that lack official support for TLS,
such as Golang. In the meantime, RCUArray can serve as the
ideal backbone for a random-access data structure such as a
distributed vector or table which both benefit from the ability
to be resized and indexed with parallel-safety. The official
integration of the QSBR algorithm into the Chapel project
is nearing completion and planned for Chapel release 1.18.
Lastly, compatibility of RCUArray and Chapel’s Domain map
Standard Interface is being explored with hopes to provide
users with a parallel-safe resizable distribution.
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