Co-Authors
Tanveer Bhuiyan!?, Sarah Harun!?l, Christopher Lightsey!?,

. David Mentgen!2! Sinan Aksoy!l, Timothy Stavenger!l],
a’p e y p e r r ap I r ary Marcin Zalewskilll, Hugh Medal?], Cliff Joslyn!*]

. | [1] Pacific Northwest National Laboratory, Seattle, Washington, USA. PaCifiC
LO uis J en k| NS [2] Mississippi State University, Mississippi State, Mississippi, USA. Northwest

NATIONAL LABORATORY

Implementation Overview

DESIE“ Prlnc'ples e AdjListHyperGraph is an adjacency list implementation of a dual AdjListHyperGraph

What is a Hypergraph? . hypergraph

Generic and Versatile

o If avertex has an edge in its adjacency list, then that §
_ o _ a. Interface-driven such that algorithms are reusable for different types edge also has that vertex in its adjacency list 2
e A hypergraph is a generalization of a graph where edges can connect more than 2 vertices - . . . Bidirectional AP 1 ed E
b. Easy to compose existing algorithms to create larger more complex algorithms Bidirectional mapping of vertices and edges -
o An edge in a thEI’gI’E ph is also called a hyperedge 2. High-Performance o Each adjacency list is contiguous array of neighbors U-EJ’
. - . _ o e (Can be distributed over multiple locales, or processing unit
e Hypergraphs can intuitively represent more complex connections a. Scalesin both shared-memory and distributed contexts . , . 0
o Using Chapel’s Domain-map Standard Interface (DSI) — 500 S
p M b. Makes ample use of Chapel’s parallelism and locality constructs = BlockDist, CyclicDist, etc. = == g
O] 2
3. Easy-to-Use e Make use of low-level runtime and compiler optimizations - £
B Y a3 Intuitive and easy-to-use o Privatization — Creates a local copy on each locale ! 000l ©
, . : = All access forward to privatized instance >
b. Simple and minimal interface . o L o
C 7 o Record-Wrapping — Eliminate communication from accessing in distributed context
Why chapelp = Makes use of ‘remote-value forwarding’ compiler optimization
D Q -
Hypergraph Incidence Matrix Bipartite Graph e Partitioned Global Address Space (PGAS) language Performance
. 3 o Developed by Cray e Hypergraph scales perfectly in Shared Memory for hypergraph generation
What is a Hypergraph Generator: o Funded by DARPA
ﬂ: y b d - Erdos Renyi (SMP) Chung Lu (SMP) BTER (SWP)
. . . _ L . ' l — 90 ! ! T T T
e A hypergraph generator can create a synthetic graph that matches characteristics of the original Ofters very strong HPC abstractions and constructs ool SMP 80 swp —— 1 17 SMP —— |
N . . : : . . o Task creation, migration, scheduling 0 3z O z 8
o Useful for stripping confidential information associated with the original dataset S 150 | g oof g 7
. o Data-Driven Locality 3 g 501 2 6
o Can create a larger graph that resembles the original) _ _) o 100 s dor & s
_ . . Moving the computation to the data = £ 97 E 4
e More complex hypergraph generators are required to match more complex characteristics _ 50 | 3
. . . ER Visual Verification O Data-Para | IE | Ism 0 ' : ' ' 0 . ' : ! e : - A .
o Erddés-Rényi (ER) can match average degree but not — —_— o 1 2 4 8 16 32 P 2 4 8 18 @ 'y 5 4 s 16 a
_ S N F..':':-“'-t:"‘ o oot earee = Distributed Parallel Iterators Threads Threads Threads
heavy-tailed degree distribution . R e~ Input € Degree o _ o el e el after 2 local
T ¢ L N e e Makes it significantly easier to write distributed programs * Hypergraph scales pertectly after 2 locales
O Chung-Lu (CL) can match degree distribution but not e ‘.“2\-. o Demonstrates overhead of adding communication
metamorphosis coefficients 54 “{;!*,! Broader Impact o BTERis under construction
O BIDCk TWG-LEVEI Erdﬁs—Rénvi (BTER) is capable ﬂf 2 .& \"q . Erdos Renyi (Distributed) 00 | Chu:'lg Lu {,DIStrlblftEd} |
: L : 2 \y b ; ' " Distrib ' Distributed
matching both degree distribution and ." ' * Collaboration between PNNL and Cray R Distributed - siibte
metamorphosis coefficients N . o Chapelis not designed for irregular applications CH g g
L ‘ ? oeren) 4 o Conducted meetings with Cray Chapel developers GL *E" %
- S o Feedback loop between Chapel and CHGL - a
o & e Original . E{:}m‘ . }Tﬁ‘é;éz’“ » Chapel improves itself as flaws are exposed h a p e ,
Lo k] - -~ Oubput reg
g g 0.40 © FEER . N = CHGL improves as it uses Chapel Locales
Ei: Lo* <) : e Chapel Aggregation Library (CAL)
ﬂ . . _{£) E-ﬂ- oo s r L]
= T Orpmal & °*° 5 o Written in Chapel, for Chapel Code Sample: Naive Erd6s-Réenyi
3 ' = . . .
O o0 |{—*— BTER s 21 o Solves performance problems and enables scalability for tested irregular algorithms
: & 0.00) H — * :
1% 10- 10 3 . . . = Performance testing performed on a Cray-XC50 Supercomputer U SFERS) IDIn axloas 1024 = 1024
Degree - Lo 1o . . . : : 2 const numEdges = 2048 * 1024;
Degree ' ‘ oa(Degree) ‘ o In-progress self-titled manuscript written in collaboration of PNNL and Cray 3 const map = new Cyclic(startIdx=0, targetLocales=Locales[4..8 by 2]);
The First Exascale Hypergraph Generator " !am leacing author el ey, S
ypergrap e Chapel HyperGraph Library (CHGL) 5 var graph = new AdjListHyperGraph(numVertices, numEdges, map);
_ _ _ 6 var rng = new RandomStream(real);
o Self-titled manuscript accepted and to appear in HPEC-2018 7 forall v in graph.getVertices() {
= | am leading author 8 forall e in graph.getEdges() {
Hypergraph lterate 9 if rng.getNext() <= probability f{
Hypergraph . ,
Dataset 10 graph.addInclusion(v,e) ;
R /O 11 }
epo .
Hypergraph Metrics 12 }
| | and Theory 13 }
Core Hypergraph GraphStats Generation GraphStats Hypergraph
Engine Module Module Module /O CHGL
Hypergraph T —
computational | Hp:rr:g:

methods

U.S. DEPARTMENT OF

ENERGY . v

