o

Pacific
Northwest

Aggregation
Library

(CAL)

Louis Jenkins

Marcin Zalewski (Pacific Northwest National Lab.),
Michael Ferguson (Cray Inc.)

o

racific . The Problem

AAAAAAAAAAAAAAAAAA

* Accessing remote data is slow
= Multiple orders of magnitude slower to access than local memory

Load — GET - 2us
100 ns
Node #1
Data
Store —
100 1 PUT —1us

o

Pacific

Northwest The Problem

* Accessing remote data is slow
= Multiple orders of magnitude slower to access than local memory

* “Moving the computation to the data” not always the best solution
= Using an on statement requires migrating tasks to another locale

on Locales[1] do ...;

Node #1

Data

o

Pacific

Northwest The Problem

* Accessing remote data is slow
= Multiple orders of magnitude slower to access than local memory

* “Moving the computation to the data” not always the best solution

= Using an on statement requires migrating tasks to another
locale
v Can become bottleneck if fine-grained

o

Pacific

Northwest The Problem

* Accessing remote data is slow
= Multiple orders of magnitude slower to access than local memory

* “Moving the computation to the data” not always the best solution

= Using an on statement requires migrating tasks to another locale
v Can become bottleneck if fine-grained
v’ Task creation is relatively expensive Task

+ Tasks are too large to spawn in a Task
fire-and-forget manner (issue #9984)

« Migrating tasks require individual active Node #1
messages (issue #9727) Task Heap

Task Stack
Task Stack
Task Stack
Task Task Stack

Task Stack
Task Stack

Task

o

Pacific

Northwest A Solution

« Coarsen the granularity of the data

= Buffer units of data to be sent to a locale in
destination buffers

From:
Locale #0
To: Locale

#1

o

Pacific

Northwest A Solution

« Coarsen the granularity of the data

= Buffer units of data to be sent to a locale in
destination buffers

From:
Locale #0
To: Locale

#1

o

Pacific

Northwest A Solution

« Coarsen the granularity of the data

= Buffer units of data to be sent to a locale in
destination buffers

From:
Locale #0
To: Locale

#1

o

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

From:
Locale #0

To: Locale
#1

A Solution

« Coarsen the granularity of the data

= Buffer units of data to be sent to a locale in destination
buffers

= When buffer is full, it can be flushed to be handled by the
user

Send to Locale #1 : Locale #0

Data

Locale on Locales[1] do ...; Locale

#O #1
Task

Task

=~ A Solution

Pacific

Northwest Coarsen the granularity of the data

= Buffer units of data to be sent to a locale in destination buffers
= When buffer is full, it can be flushed to be handled by the user
= User can perform coalescing to combine aggregated data

Locale on Locales[1] do ...; Locale
#O #1
Task

Task

From:
e _ Locale #0
To: Locale
#1

Locale #0
g Coalesced
Data

Coalesced Send to Locale #1

Data

% User Program

Pacific
Northwest 5

NATIONAL LABORATORY

forall-stmt coforall-stmt

A

Chapel’s Multiresolution f

Design Philosophy

« Higher Level composed of
Lower Level abstractions,

begin-stmt on-stmt

A

features, and language !
constructs

= Changes to lower level
propagate up to higher level Communications Layer

= User free to use either

A

Tasking Layer

A A

v" High-Level for convenience
v Low-Level for performance

Memory Layer Atomics Implementation

o

Pacific

Northwest (Global-View Programming

NATIONAL LABORATORY

« Abstracts locality for the user
* No need to think: “What portion of the array does this task own?”

= Array can be accessed from any locale, even if it is not distributed over that locale...
v" Remote references are resolved into remote PUT/GET implicitly

Chapel MPI
1 float globalSum = O;
1 var sum float; 2 float localSum = O;
» forall a in arr with (+ reduce sum) {: for (int i = localStart; i < localEnd; i++) {
3 sum += a; 4 localSum += arr[i];
i} o J

¢ MPI_REDUCE(&localSum, &globalSum, ...);

o

Pacific

Northwest (Global-View Programming

NATIONAL LABORATORY

« Abstracts locality for the user
* No need to think: “What portion of the array does this task own?”

= Array can be accessed from any locale, even if it is not distributed over that locale...
v" Remote references are resolved into remote PUT/GET implicitly

 Multiresolution: More Abstraction

Chapel MPI

float globalSum = O;

float localSum = O;

for (int i = localStart; i < localEnd; i++) {
localSum += arr[i];

1 var sum = + reduce arr;

+
MPI_REDUCE(&localSum, &globalSum, ...);

) &) =~ w N =

o ~ [<] ' w N =

o

Pacific

Northwest Global-View Programming

« Abstracts locality for the user
* No need to think: “What portion of the array does this task own?”

= Array can be accessed from any locale, even if it is not distributed over that locale...

v" Remote references are resolved into remote PUT/GET implicitly

* Multiresolution: Less Abstraction

Chapel MPI
var sum : float; 1 float globalSum = O;
coforall loc in Locales with (+ reduce sum) do on loc {) float localSum = O;
coforall tid in O..#here.maxTaskPar with (+ reduce sum) { . . o)
for i in computeRange(arr.domain.localSubdomain(), tid) {° for (int i = localStart; i < localEnd;
sum += arr[il; 4 localSum += arr[i];
} 5t
¥ 6 MPI_REDUCE(&localSum, &globalSum,

}

c);

i++) {

pafiﬁc Chapel Aggregation Library

Northwest (C AL)

NATIONAL LABORATORY

» Written in Chapel, for Chapel

= Minimal and User-Friendly

v Unassuming of how data is handled

v" Designed specifically for Chapel
= Distributed, Scalable, and Parallel-Safe

v" Supports Global-View Programming

v Usable with Chapel’s parallel and locality constructs
= Modular, Reusable, and Generic

v Generic on user-defined type

v’ Easy to use and 'plug in’

o

Pacific

Northwest [Mlinimalism

AAAAAAAAAAAAAAAAAA

« CAL is an aggregation library
* Processing of the aggregated data is deferred to the user
= Buffer is returned to the last task that filled it

1 const msg = "From Locale#0 to Locale#1";

> const loc = Locales[1];

s var aggregator = new Aggregator(string);

1+ var buffer = aggregator.aggregate(msg, loc);

5 if buffer != nil then handleBuffer(buffer);

s [(buf, loc) in aggregator.flush()] on loc do handleBuffer (buf);

o

Pacific
Nothwest Distributed Object Pattern

« Use privatization to enable global-view programming

» GlobalClass forwards access to per-locale LocalClass privatized instances
= Each privatized instance can communicate and coordinate with others

pragma "always RVE"

record GlobalClass {
type classType;
var pid : int;

forwarding chpl_getPrivatizedCopy(pid, classType)

=~ O3 (%) ~ [°Y ~™ =

}

| ;
1 class LocalClass 1 class LocalClass
D var pid : int; 6 D var pid : int;
5} 5}

Locale#0 oo e® Locale#N

o

lF\’laciiﬁc
vorthwest Aggregator
» Aggregator forwards all accesses to per-locale privatized instances

» Distributed and parallel access is abstracted
= Supports global-view programming

pragma "always RVE"
record Aggregator {
type bufType;
var pid : int;

TT = w T~ =]

forwarding chpl_getPrivatizedCopy(pid, bufType)

r

class LocalBuffer { class LocalBuffer {
type t; type t;
var pid : int; var pid : int;

var buffers : [0..#numLocales] BufferPool(t) var buffers : [0..#numLocales] BufferPool(t)
} }

Locale#0 oo o Locale#N

o

Pacific
Northwest

NATIONAL LABORATORY

Aggregator -
Performance

* 10x — 100x speedup at
32 nodes

» Histogram
» Hypergraph Generation

Time (seconds)

Time (seconds)

180
160
140
120
100
80
60
40
20

180
160
140
120
100
80
60
40

20 ¢

Histogram (uGNI w/ 16MB Hugepages)

RA -
NA _—
Aggregated

1 2 4 8 16 32

Locales

(a) uGNI Histogram

Erdos Renyi (uGNI w/ 16MB Hugepages)

Naive
Aggregated

1 2 4 8 16 32

Locales

(a) uGNI Erdos Renyi

Time (seconds)

Time (seconds)

Histogram (GASNet w/ Aries)

600
Fast

500 Aggregated
400
300
200
100

0 i

1 2 4 8
Locales
(b) GASNet Histogram
Erdos Renyi (GASNet w/ Aries)

1400 v v v
1200 |
1000
800 |
600
400 |
200 Naive

0) Aggregated

2 4 8 16 32
Locales

(b) GASNet Erdos Renyi

o

Pacific

Northwest Distributed - Example

10

11

12

« Aggregator is allocated on Locale#0, but accessible from Locale#1
= Accesses are forwarded to Locale#1’s privatized instance
= Global-View Programming

 Implicit parallelism (line 9) vs Explicit parallelism (line 11)

var aggregator = new Aggregator(int);
// Migrate to Locale #1 from Locale #0
on Locales[1] {

¥

// Aggregate single value to Locale #0

var buffer = aggregator.aggregate(0, Locales[0]);

// If mon-nil, then handle buffer.

if buffer != nil then handleBuffer(buffer);

// Aggregate multiple units of data via Chapel's implicit parallelism
var buffers = aggregator.aggregate(l..1024, Locales[0]);

// Check if any of the buffers are nil

[buf in buffers] if buf != nil then handleBuffer(buf);

o

et
nortnwest Modu Iar|ty
» Composition of Distributed Objects
= Aggregator can be used within other global-view data structures

= Future of Distributed Object Oriented Programming (?)

pragma "always RVE"

record GlobalClass {
type classType;
var pid : int;

forwarding chpl_getPrivatizedCopy(pid, classType)
t

N (=) v ~ [*Y) ™ =

y '

class LocalClass { class LocalClass {

type t; Y type t;
var pid : int; ‘ ‘ ‘

var pid : int;
var aggregator : Aggregator(t) var aggregator : Aggregator(t)]
1

1

T ~ W ™ =

et >y W L\ =

Locale#0 oo e® Locale#N

o

Pacific

Northwest Future Works

o Software release of CAL

= Currently only available as module under Chapel HyperGraph Library (CHGL)
v" github.com/pnnl/chgl

» Independent release coming soon (?)

* Integration into Chapel

= Mason package or Standard Module (?)
» Run-time integration

« Aggregation handlers as first-class functions
= Once Chapel has better first-class function support

http://www.github.com/pnnl/chgl

:{ Potential Application

Northwest Light Weight Tasks (LWT)

AAAAAAAAAAAAAAAAAA

« Chapel Tasks are infeasible to use in

fire-and-forget manner 1 var lwt = new LWT(visit);

= Stack size of tasks in Chapel are staticand 2 proc visit(v : Vertex) {

large (8MB default) 3 for vv in neighbors(v) {
= Task migration can be made asynchronous if hasProperty(vv) {

but is not aggregated

| | 5 lwt.spawn(vv, vv.locale);
» Solution — Make a library for LWT . }

= Use Distributed Object pattern for Global- , }

View programming }

8

» Use Aggregator for aggregation

= Use First-Class Functions (once improved) ° forall v in vertices {

to represent a lightweight task 10 if hasProperty(v) {
11 lwt.spawn(v) ;
12 }

13}

o

Pacific
Northwest

NATIONAL LABORATORY

Vertex Degree
Distribution

10

11

=

3

14

15

16

17

18

19

20

21

22

23

// Find largest degree of all vertices in distributed graph
var N = max reduce [v in graph.getVertices()] graph.degree(v) ;
// Histogram is cyclically distributed over all locales
var histogramDomain = {1..N} dmapped Cyclic(startIdx=1);
var histogram : [histogramDomain] atomic int;

// Aggregate increments to histogram
var aggregator = new Aggregator(int);
forall v in graph.getVertices() {
const deg = graph.degree(v);
const loc = histogram[deg].locale;
var buffer = aggregator.aggregate(deg, loc);
if buffer != nil {
on loc do [deg in buffer] histogram[deg].add(1);
buffer.done();
+
}

// Flush

forall (buf, loc) in aggregator.flush() {
on loc do [deg in buf] histogram[deg].add(1);
buffer.done();

}

