
Distributed 
Non-Blocking Data 
Structures for the 
Partitioned Global 

Address Space
Garvit Dewan, Louis Jenkins



Background



Why ‘Non-Blocking’?
● Disadvantage of using locks (mutexes, semaphores, spinlocks, etc.)

○ Potential to introduce Deadlock, Livelock, Priority Inversion, etc.
○ Coarse-grained synchronization eliminates scalability
○ Fine-grained synchronization can scale but increases chance of deadlock/livelock

● Advantages of Non-Blocking algorithms
○ Liveness - Property of the progress of threads in a system

■ Obstruction-Free - Threads finish in finite number of steps if not obstructed
■ Lock-Free - At least one thread finishes in a bounded number of steps
■ Wait-Free - All threads finish in a bounded number of steps

○ Provide scalability while also providing guarantees on liveness, although difficult to create



Concurrent-Memory Reclamation
● Reclamation of objects that may be accessed by other threads

○ Reclaim too early and you have a use-after-free and undefined behavior
○ Never reclaim and you leak memory
○ Not all systems have built-in garbage collection (C,C++,Chapel)
○ Should be fast enough to not induce too much overhead on operations

● Different approaches towards the solution
○ Pointer-Based - Objects are not reclaimed if any thread is explicitly tracking it
○ Quiescent-Based - Objects are not reclaimed until all threads become quiescent (epochs)
○ Reference-Counting - Objects are not reclaimed until reference count is 0
○ Garbage-Collection - Objects are not reclaimed if reachable by any thread



Partitioned Global Address Space (PGAS)
● Distributed “Shared” Memory Model

○ Global address space composed of virtual address of individual processing elements (PE)
○ Remote Direct Memory Access (RDMA) are handled entirely by NIC (no CPU intervention)
○ PEs can access memory on remote PEs via RDMA PUT/GET (analog of store/load)

■ Low Latency Atomics (µs) via RDMA also available on most NICs

● Chapel, the PGAS programming language
○ Transparent conversion of loads and stores to GETs and PUTs respectively
○ Provides features that enable (pseudo) first-class distributed objects

■ Accesses are redirected to privatized instance of object; added layer of transparency
○ Enable writing algorithms in both distributed- and shared-memory

■ Write-Once, Run-Anywhere (w.r.t shared-memory and distributed systems)



Distributed Non-Blocking Algorithms and 
Data Structures



Atomics on Distributed Objects
● Missing prerequisite for Non-Blocking Algorithms and Data Structures

○ Pointers are represented as 128-bit structs (64-bit virtual address, 64-bit locality info.)
○ NICs only support 64-bit atomic operations

■ Require ‘remote-execution’ atomics (Active Message)
■ RDMA atomics outperform ‘remote-execution’ atomics by an order of magnitude

● Implemented AtomicObject
○ Compress 48-bit virtual address with 16-bit locality information (64-bit total for RDMA)
○ Extended to provide solution to ABA problem (ABAWrapper)

■ Attached 64-bit sequence number to compressed 64-bit pointer
■ Requires 128-bit Compare-and-Swap primitives via remote execution
■ Used internally to implement other more scalable solutions



AtomicObject Performance
● Compare AtomicObject to native atomic implementation

○ Strong scaling, w/ vs. w/o ABA, w/ vs w/o RDMA, distributed- and shared-memory
○ Equal ratio of reads, writes, compare-and-swap, and exchange operations



AtomicObject - Future works
● Support more than 16-bits worth of locality information (> 216 PEs)

○ Introduce distributed table[1] of objects where 64-bit index serves as pointer to object
■ “All problems in computer science can be solved by another level of indirection”

● Explore possibility of handling managed types (`owned` and `shared`)
○ Currently only supports `unmanaged` types.

[1] L. Jenkins, "RCUArray: An RCU-Like Parallel-Safe Distributed Resizable Array," 2018 IEEE International Parallel and 
Distributed Processing Symposium Workshops (IPDPSW), Vancouver, BC, 2018, pp. 925-933, doi: 
10.1109/IPDPSW.2018.00146.



EpochManager
● EpochManager is built on the notion of

○ Epoch-Based Reclamation
○ Limbo Lists

● Epoch-Based Reclamation (EBR)
○ Is a concurrent-safe memory reclamation system
○ Utilizes epochs, which are descriptors for a specific period of time, to determine

■ The quiescence of objects
■ When they are safe to be reclaimed



Epoch-Based Reclamation



EpochManager
● Limbo Lists

○ Objects marked for deletion during an epoch are held in limbo until they are safe to be 
deleted

○ 2 phases:
■ concurrent insertion
■ Bulk deletion



EpochManager



EpochManager
● Limbo Lists

○ Implemented using push-exchange stack
○ Both insertion and deletion operations are wait-free



EpochManager
● EpochManager is privatized

○ An instance of EpochManager is created and maintained on each locale
○ 3 limbo lists per locale, corresponding to epochs e - 1, e, e + 1
○ One global epoch; locale-local epoch



EpochManager
● Tokens

○ Issued to each participating task
○ Keeps track of status of a registered task (active/inactive)
○ In case of active task, keeps track of the epoch in which the task is engaged in
○ Each task must register to obtain a token; unregister to free a token 

■ automatically triggered when token goes out of scope

● Tokens are managed using two lists
○ allocated_list: List of all allocated tokens
○ free_list: List of free tokens ready to be recycled



EpochManager
● To enter critical section, a task must pin its token

○ Pinning marks the task as “active”
○ Task is always pinned to the current locale epoch
○ While a task is pinned, its local epoch cannot be updated
○ Objects deleted go into the corresponding epoch’s limbo list

● To exit critical section, a task must unpin its token
○ Unpinning marks the task as “inactive”



Example usage of EpochManager



EpochManager
● Global epoch can be advanced by calling tryReclaim on the token

○ Advances the epoch only if no active task is in an epoch previous to the global epoch
○ On successful advancement, reclaims objects safe to be reclaimed
○ Constructs a scatter list of remote objects



EpochManager
● LocalEpochManager

○ Shared-memory optimized variant
○ Lacks locale-local epochs
○ Does not take remote objects into consideration



EpochManager Performance
● Read-Only (no deletion)

○ Thread Enters
○ Thread Read/Writes Data
○ Thread Exits

● Relatively stable perf.
○ Even when distributed
○ Shows privatization benefit

■ Locale-private epochs



EpochManager Performance
● Small Static Workload

○ Thread Enters
○ Thread Reads/Writes Data
○ Thread Deletes Data
○ Thread Exits
○ Reclaim Memory when finished

● Embarrassingly Parallel
○ Scales in distributed memory
○ Highlights privatization benefit

■ Locale-private limbo lists



EpochManager Performance
● Typical Workload

○ Thread Enters
○ Thread Read/Writes Data
○ Thread Deletes Data
○ Thread Exits
○ Thread periodically reclaims
○ Reclaim Memory when finished

● Embarrassingly Parallel
○ Scales in distributed memory
○ Further highlights privatization

■ Scatter lists for reclamation



EpochManager Performance
● Worst-Case Workload

○ Thread Enters
○ Thread Read/Writes Data
○ Thread Deletes Data
○ Thread Exits
○ Thread always reclaims
○ Reclaim Memory when finished

● Embarrassingly Parallel
○ Scales in distributed memory
○ Further highlights privatization

■ Scatter lists for reclamation



EpochManager - Future Work
● Interlocked Hash Table[2]

○ 80% find, 10% insert, 10% delete
■ Shared-Memory ------> 
■ 60x faster than standard...

○ 1.5B Op/Sec at 64 locales!!!
■ Map not dist. data structure

● More data structures to come

[2] L. Jenkins, T. Zhou and M. Spear, "Redesigning Go’s Built-In 
Map to Support Concurrent Operations," 2017 26th International 
Conference on Parallel Architectures and Compilation 
Techniques (PACT), Portland, OR, 2017, pp. 14-26, doi: 
10.1109/PACT.2017.45.



Conclusion
● The AtomicObject is a solution to the problem of a lack of language 

support atomic operations on objects
○ Works in both shared and distributed memory
○ Provides protection from the ABA problem

● The EpochManager is a non-blocking epoch-based reclamation garbage 
collection system
○ allows for concurrent-safe reclamation even in distributed-memory contexts

● Both of these are essential building blocks for developing non-blocking 
algorithms in both shared-memory and distributed-memory.

● Contact: 
○ Garvit Dewan - gdewan@cs.iitr.ac.in
○ Louis Jenkins - ljenkin4@ur.rochester.edu

mailto:gdewan@cs.iitr.ac.in
mailto:ljenkin4@ur.rochester.edu

