Di

stributed

Non-Blocking Data

Struc

Partiti

Add

ures for the
oned Glohal

eSS Space

Garvit Dewan, Louis Jenkins

Backeround

Why ‘Non-Blocking™/

e Disadvantage of using locks (mutexes, semaphores, spinlocks, etc.)
o Potential to introduce Deadlock, Livelock, Priority Inversion, etc.
o Coarse-grained synchronization eliminates scalability
o Fine-grained synchronization can scale but increases chance of deadlock/livelock

e Advantages of Non-Blocking algorithms
o Liveness - Property of the progress of threads in a system
m Obstruction-Free - Threads finish in finite number of steps if not obstructed
m Lock-Free - At least one thread finishes in a bounded number of steps
m Wait-Free - All threads finish in a bounded number of steps
o Provide scalability while also providing guarantees on liveness, although difficult to create

Concurrent-Memory Reclamation

e Reclamation of objects that may be accessed by other threads

(@)

O

(@)

(@)

Reclaim too early and you have a use-after-free and undefined behavior
Never reclaim and you leak memory

Not all systems have built-in garbage collection (C,C++,Chapel)

Should be fast enough to not induce too much overhead on operations

e Different approaches towards the solution

(@)

@)
(@)
@)

Pointer-Based - Objects are not reclaimed if any thread is explicitly tracking it
Quiescent-Based - Objects are not reclaimed until all threads become quiescent (epochs)
Reference-Counting - Objects are not reclaimed until reference count is 0
Garbage-Collection - Objects are not reclaimed if reachable by any thread

Partitioned Global Address Space (PGAS)

e Distributed “Shared” Memory Model

o Global address space composed of virtual address of individual processing elements (PE)
o Remote Direct Memory Access (RDMA) are handled entirely by NIC (no CPU intervention)
o PEs can access memory on remote PEs via RDMA PUT/GET (analog of store/load)

m Low Latency Atomics (us) via RDMA also available on most NICs

e Chapel, the PGAS programming language
o Transparent conversion of loads and stores to GETs and PUTs respectively
o Provides features that enable (pseudo) first-class distributed objects
m Accesses are redirected to privatized instance of object; added layer of transparency
o Enable writing algorithms in both distributed- and shared-memory
m Write-Once, Run-Anywhere (w.r.t shared-memory and distributed systems)

Distributed Non-Blocking Algorithms and
Data Structures

Atomics on Distributed Objects

e Missing prerequisite for Non-Blocking Algorithms and Data Structures
o Pointers are represented as 128-bit structs (64-bit virtual address, 64-bit locality info.)
o NICs only support 64-bit atomic operations
m Require ‘remote-execution’ atomics (Active Message)
m RDMA atomics outperform ‘remote-execution’ atomics by an order of magnitude

e Implemented AtomicObject
o Compress 48-bit virtual address with 16-bit locality information (64-bit total for RDMA)
o Extended to provide solution to ABA problem (ABAWrapper)
m Attached 64-bit sequence number to compressed 64-bit pointer
m Requires 128-bit Compare-and-Swap primitives via remote execution
m Used internally to implement other more scalable solutions

Time (seconds)

10 ¢

AtomicObject Performance

Compare AtomicObject to native atomic implementation

o Strong scaling, w/ vs. w/o ABA, w/ vs w/o RDMA, distributed- and shared-memory
o Equal ratio of reads, writes, compare-and-swap, and exchange operations

Shared Memory

T

AtomicObject —&—
I I

atomic int —&—]
AtomicObject (ABA) —v— | |

Tasks

[ee] o] o
— ™M

Time (seconds)

1000 ¢

100

0.01

1
2
4
8
16
32
64

Distributed Memory

I I
atomic int (none) —&—
atomic int (ugni) ——

E AtomicObject (ABA) —v— /;
F| AtomicObject (none) —&— 3

10

AtomicObject (ugni)

Locales

AtomicObject - Future works

e Support more than 16-bits worth of locality information (> 2'° PEs)
o Introduce distributed table[1] of objects where 64-bit index serves as pointer to object
m “All problems in computer science can be solved by another level of indirection”
e Explore possibility of handling managed types (owned™ and "shared ")
o Currently only supports "unmanaged " types.

[1]1 L. Jenkins, "RCUArray: An RCU-Like Parallel-Safe Distributed Resizable Array," 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), Vancouver, BC, 2018, pp. 925-933, doi:
10.1109/IPDPSW.2018.00146.

EpochManager

e EpochManager is built on the notion of
o Epoch-Based Reclamation
o Limbo Lists

e Epoch-Based Reclamation (EBR)
o Is aconcurrent-safe memory reclamation system
o Utilizes epochs, which are descriptors for a specific period of time, to determine
m The quiescence of objects
m When they are safe to be reclaimed

Epoch-Based Reclamation

Global Epoch Epoch 0 Epoch 1 Epoch 2

Locale O - Thread O Epoch 2 Epoch 1

Locale O - Thread 1

Locale 1 - Thread O

Locale 1 - Thread 1

Epoch 2

-
|

|
t4 t5

EpochManager

e Limbo Lists
o Objects marked for deletion during an epoch are held in limbo until they are safe to be
deleted
o 2 phases:
m concurrent insertion
m Bulk deletion

EpochManager

Global Epoch =2

Locale O a Locale N

Local Epoch =2 a Local Epoch =2

EpochManager

e Limbo Lists

o Implemented using push-exchange stack
o Both insertion and deletion operations are wait-free

1 proc push (obj : unmanaged object?) {

2 var node = recycleNode (ob]);

3 var oldHead = _head.exchange (node);
4 node.next = oldHead;

5}
6 proc pop () {
7 return _head.exchange (nil) ;

8 }

EpochManager

e EpochManager is privatized
o Aninstance of EpochManager is created and maintained on each locale
o 3limbo lists per locale, corresponding to epochse-17,e, e+ 1
o One global epoch; locale-local epoch

EpochManager

e Tokens
o Issued to each participating task
o Keeps track of status of a registered task (active/inactive)
o In case of active task, keeps track of the epoch in which the task is engaged in
o Each task must register to obtain a token; unregister to free a token
m automatically triggered when token goes out of scope

e Tokens are managed using two lists
o allocated_list: List of all allocated tokens
o free_list: List of free tokens ready to be recycled

EpochManager

e To enter critical section, a task must pin its token

(@)

@)
@)
(@)

Pinning marks the task as “active”

Task is always pinned to the current locale epoch

While a task is pinned, its local epoch cannot be updated
Objects deleted go into the corresponding epoch’s limbo list

e To exit critical section, a task must unpin its token

(@)

Unpinning marks the task as “inactive”

11

Example usage of EpochManager

var em = new EpochManager () ;
// Serial and Shared Memory
var tok = em.register();

tok.pir() ;
tok.unpin();

tok.unregister () ;

LA Parallel

and Digstributed (forall). ..

forall x in X with (var tok = em.register())

tok.pin ()

4

tok.deferDelete (X);
tok.unpini() ;
} // automatic unregister

em.clear () ;

// Reclaim everything at once.

{

EpochManager

e Global epoch can be advanced by calling tryReclaim on the token
o Advances the epoch only if no active task is in an epoch previous to the global epoch
o On successful advancement, reclaims objects safe to be reclaimed
o Constructs a scatter list of remote objects

EpochManager

e LocalEpochManager
o Shared-memory optimized variant
o Lacks locale-local epochs
o Does not take remote objects into consideration

EpochManager Performance

. Pin-Unpi
e Read-Only (no deletion) . e
o Thread Enters i

o Thread Read/Writes Data
o Thread Exits

e Relatively stable perf.
o Even when distributed

o Shows privatization benefit
m Locale-private epochs

I
none —¥—
ugni —&— |

Time (seconds)

0.01 : ' :

1

2

4

8
16
32 -
64

Locales

EpochManager Performance

. Pin-Unpin w/ Deletion + Cleanup
® Sma ” Statlc Workload 0% Remote Objects 50% Remote Objects 100% Remote Objects
@) ThreadEnterS 10 1717171 10 1711 10 171171
. E none_ —K— E L none_ —k— 1 L nong —k— 1
o Thread Reads/Writes Data - ugni e [ugni —=—] ugni —=— |
o Thread Deletes Data ’
o Thread Exits
1t
o ;

Reclaim Memory when finished
e Embarrassingly Parallel

o Scales in distributed memory
o Highlights privatization benefit 0.1
m Locale-private limbo lists ’

Time (seconds)
Time (seconds)
Time (seconds)

0.01 L | 1 |
N < 00 O N
— ™M

64
2
4
8

O N < 00 O N <
— — ™M O

Locales Locales Locales

EpochManager Performance

Pin-Unpin w/ Sparse tryReclaim

o Typlcal Workload 0% Remote Objects 50% Remote Objects 100% Remote Objects
o Thread Enters b hhe i ¥ 9 0 one s]
o Thread Read/Writes Data Pt TR MG e
o Thread Deletes Data |
o Thread Exits
o Thread periodically reclaims g g g
o Reclaim Memory when finished § g g
e Embarrassingly Parallel g 2 2
[= [
o Scales in distributed memory
o Further highlights privatization
m Scatter lists for reclamation
O'Olmiroloéég O'lr\n;ro‘oéég 0'1N<‘rolog‘_3|é$

Locales Locales Locales

EpochManager Performance

Pin-Unpin w/ Dense tryReclaim

Worst-Case Workload

O O O O O O

Thread Enters

Thread Read/Writes Data
Thread Deletes Data

Thread Exits

Thread always reclaims
Reclaim Memory when finished

Embarrassingly Parallel

(@)

(@)

Scales in distributed memory
Further highlights privatization
m Scatter lists for reclamation

Time (seconds)

0% Remote Objects

100 71—
L none —*—]
ugni —&— |

0.1

1 | | |
N < 00 © N
- M O

Locales

Time (seconds)

50% Remote Objects
100

10 ¢

0.1

100% Remote Objects

100

10 ¢

Time (seconds)

1 1 | |
N < 00 OV N
— ™M

0.1

| 1 | |
N < 0 O N <
- ™M O

64

Locales Locales

EpochManager - Future Work

e Interlocked Hash Table[2]
o 80% find, 10% insert, 10% delete
m Shared-Memory ------ >
m 60x faster than standard...
o 1.5B Op/Sec at 64 locales!!!
m Map not dist. data structure

e More data structures to come

[2] L. Jenkins, T. Zhou and M. Spear, "Redesigning Go's Built-In
Map to Support Concurrent Operations," 2017 26th International
Conference on Parallel Architectures and Compilation
Techniques (PACT), Portland, OR, 2017, pp. 14-26, doi:
10.1109/PACT.2017.45.

Tasks

16

32

44

Map (ns/op)

106.038

165.431

219.872

268.668

421.874

577.605

621.96

ConcurrentMap (ns/op)

207.047

126.87

68.0732

35.6337

19.3164

11.1499

10.99

Conclusion

e The AtomicObiject is a solution to the problem of a lack of language

support atomic operations on objects

o Works in both shared and distributed memory
o Provides protection from the ABA problem

e The EpochManager is a non-blocking epoch-based reclamation garbage
collection system
o allows for concurrent-safe reclamation even in distributed-memory contexts
e Both of these are essential building blocks for developing non-blocking
algorithms in both shared-memory and distributed-memory.

e (Contact:

o @Garvit Dewan -
o Louis Jenkins -

mailto:gdewan@cs.iitr.ac.in
mailto:ljenkin4@ur.rochester.edu

