
Code Glosser
Developed by: Louis Jenkins

Advised by: Drue Coles



What is Code-Glosser

• Academic Enrichment Tool
• Makes it easy for instructors to provide feedback to students

• Feedback in the form of a markup
• Highlighted segment of code with a message

• Free of cost and Open-Sourced under the BSD 3-Clause License

• Created for Independent Study for Dr. Coles
• Dr. Coles needed software to provide feedback to students

• Diverged from Dr. Coles’ original plan into something much more
• Going from a (not-so) simple NetBeans plugin to it’s own stand-alone 

application



Features
• Portability

• To Markup
• Java Runtime Environment 8

• To View
• Web Browser (HTML + CSS support)

• Effortless Markups
• Markup portions of code in moments

• Leave feedback for student with a message
• Templates

• Save more time by applying templated markups
• Comes with both Google’s Java and C++ style guide templates

• Project-Scale Grading
• Markup and exportation of entire projects

• Projects are as simple as a directory containing code
• Does not need to be a NetBeans or Eclipse project

• Can even be individual files

• Syntax Highlighting
• Uses the highlight.js library for syntax highlighting

• Supports 169 languages
• Does not require an internet connection to markup or to view



Why should you use Code-Glosser
Current Approach to Grading

• Print out project
• Waste of paper
• Bulky to carry around
• Very bad for multi-file projects

• Leave feedback in pen
• Your handwriting may not be intelligible to 

everyone
• Mistakes cannot be erased

• You are much less likely to leave feedback for 
small or less important things
• Especially if a lot of people make the same 

mistakes
• Feedback left most likely short

• Need to fit on a single page, and also need to 
write them in bulk

• Time Consuming
• Too much time and effort to do for each and 

every student, every assignment for every class

• Hand back to student
• They may not even read it anyway

• May have been wasted time

The Code-Glosser Approach

• Open the project in Code-Glosser
• Can open any file inside of the project

• File markups are preserved when switching files

• Markup project
• Can markup while you’re reading it

• No need to make multiple passes

• Easy to make changes
• Create, Modify, and Delete on demand

• Easy to leave feedback on very common mistakes
• Templates make it trivial

• Leave feedback on any section of code
• Can be a variable, a block of code, or even a function

• Export Project
• Exports into a compressed archive that the 

student may view
• No printing needed
• All electronic



Demo

Youtube Video

Included as a URL and not embedded due to it causing crashes on 
multiple machines tested on.

https://www.youtube.com/watch?v=FailmQ7r73s


Java – S.A.K-Overlay (Android Windows Manager)



Go – Concurrent Map (Runtime)



Haskell – JVM ByteCode Interpreter



C – MoltarOS (Multitasking)



X86 Assembly – MoltarOS (Bootstrap)



Templates

• No currently implemented way to create them in Code-Glosser
• Unless significant demand, cannot do so

• Templates need to be done by hand
• Tedious but saves a lot of time in the long run

• No currently formatted style guide available
• Does come with one for Java and C++

• Templates are required to have a special format
• Contains Categories and Templates

• Described in the next few slides



Templates – JSON 
Format

• Categories

• Used to logically separate 
markups

• Can contain other categories 
and markups

• Must contain a key “category” 
set to 𝑡𝑟𝑢𝑒

• Must contain a title which 
describes it

• Must contain a body 
containing an array of other 
templates or categories



Templates – JSON 
Format

• Templates

• The actual markup data in 
question

• Must contain a title that 
describes it

• Must contain a message that 
is displayed

• Can optionally contain a color 
that is shown in Code-Glosser



Templates – Other Languages

JSON YAML



Implementation 
of 

Code-Glosser
The “Interesting” Design and Implementation details



Syntax Highlighting
• Code-Glosser originally a NetBeans plugin

• NetBeans only allows Java Swing 
• Java Swing has extremely minimal support for HTML and CSS, no JavaScript

• Need to support any language for it to become truly useful
• Found ‘highlight.js’ library

• Supports 169 languages and 77 styles

• Works by executing a JavaScript function on page load to add CSS Tags around code for syntax highlighting

• Remember: Java Swing does not support JavaScript

• Need a way to execute JavaScript, and extract the changed HTML after page load
• JavaScript is available in JavaFX, and so switched to an independent platform

• Needs to be a headless browser so as not to disturb user.

• Set the current style.css and extracted HTML to display

• Need to be usable offline
• Library downloaded and coupled with Code-Glosser

• Exported HTML needs to be independent
• Cannot rely on a relative CSS file

• Since JavaScript is already executed in JavaFX WebView, can embed CSS for both Markup and Style



Java Swing and Concurrency – Background
• Java Swing has one UI Thread

• Called the “AWT Dispatch Thread”
• In charge of updating the UI
• Thread used by default

• Problem
• When performing long-running tasks, UI will not update and will ‘freeze’

• UI will no longer be responsive as it cannot return until it finishes the task.

• Naïve Solution
• “Throw more threads at the problem until it goes away”
• Only the UI Thread is allowed to manipulate the UI

• GUI components are not ‘thread-safe’

• Having multiple threads process different UI events simultaneously can result in undefined 
behavior without proper synchronization or communication
• Synchronization is a huge bottleneck and can end up making the code perform even worse than before

• Non-Blocking synchronization is over-complicated (and VERY difficult) for plain old GUI work

• Communication through Message-Passing is viable, but how can we do so?



Handling UI Events – The Problem
• UI Events can occur at anytime, even while processing another event

• UI Events may need to notify multiple components
• These components may need to react and notify other components based on certain 

conditions
• Including the component that notified it

• Events need to flow both ways

• What about IO Events
• IO Event – A network call or reading from hard drive
• All IO Bound tasks should not be performed on the UI Thread

• IO Bound – “Time needed is based on speed of the IO Device (I.E: Hard Drive), not CPU.”
• CPU Bound – “Time needed is based on speed of CPU”

• Need to perform these on a background thread…

• How do we keep this extensible
• How do we not tightly couple components together
• How do we keep the control flow understandable

• How do we model it

• How can it be improved and extended upon with ease



Handling UI Events – The Model



Handling UI Events – The Solution
• Push-Based Event Notifications

• 𝐸𝑣𝑒𝑛𝑡𝐵𝑢𝑠
• Uses RxJava’s 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 and 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟 implementations

• 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 – “A ‘publisher’ that emits items that can be observed.”

• 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟 – “A ‘subscriber’ that observes the items emitted by the ‘publisher’ 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒.”

• Can “connect” to other 𝐸𝑣𝑒𝑛𝑡𝐵𝑢𝑠’ that send/receive to/from us
• Each component maintains an 𝐸𝑣𝑒𝑛𝑡𝐵𝑢𝑠

• 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
• Processes 𝐸𝑣𝑒𝑛𝑡s received over an 𝐸𝑣𝑒𝑛𝑡𝐵𝑢𝑠
• Sends 𝐸𝑣𝑒𝑛𝑡s over the 𝐸𝑣𝑒𝑛𝑡𝐵𝑢𝑠

• Responsiveness
• All processing is performed in a single background thread

• A single background thread greatly reduces complexity of multithreading

• UI updates are performed on the Swing UI Thread
• Keeps the UI from “freezing”

• Extensibility
• Very easy to add, modify, or even remove an 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

• Simple as registering/unregistering on the 𝐸𝑣𝑒𝑛𝑡𝐵𝑢𝑠



𝐸𝑣𝑒𝑛𝑡
• Each 𝐸𝑣𝑒𝑛𝑡 is made of a 𝑠𝑒𝑛𝑑𝑒𝑟, a 

𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡, a 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟, and an opaque 
𝑑𝑎𝑡𝑎 reference
• 𝑠𝑒𝑛𝑑𝑒𝑟 – Who sent this 𝐸𝑣𝑒𝑛𝑡
• 𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡 – Who will receive this 𝐸𝑣𝑒𝑛𝑡
• 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 – What this 𝐸𝑣𝑒𝑛𝑡 is 

• The meaning is up to the sender and recipient 
to find out.

• 𝑑𝑎𝑡𝑎 – Data associated with this 𝐸𝑣𝑒𝑛𝑡
• The meaning is coupled to the 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟

• Optimization (Assuming HotSpot JVM)
• Size of 4 + 4 + 4 + 4 + 8 = 24 bytes

• 4 References + 8 Byte Object Header

• Compressed oops
• Pointers (references) are 32-bits (4 bytes) in 

size, even on a 64-bit system

• How – Objects are allocated on an 8-byte 
alignment; these 32-bit pointers are scaled to 
a factor of 8 and added to a 64-bit base 
address

• Garbage Collection
• Events are immutable and short-lived

• Only used by a single 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

• Contained in the “young” generation



𝐸𝑣𝑒𝑛𝑡𝐵𝑢𝑠
• Handling Incoming Events

• Filter out any 𝐸𝑣𝑒𝑛𝑡 not meant for us

• Event Logging

• Defer processing to 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

• 𝑓𝑙𝑎𝑡𝑀𝑎𝑝 allows them to return zero or more 𝐸𝑣𝑒𝑛𝑡s through an 
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒

• The 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 can have associated with it it’s own processing

• I.E: IO Processing, Interval or delayed 𝐸𝑣𝑒𝑛𝑡s

• Handled (by default) on the background worker thread

• Although the 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 may switch back and forth between 
threads and schedulers

• Error Handling

• When an error occurs in any stage of the pipeline, such as an 
uncaught Exception, the handler will be invoked and processing will 
halt

• Broadcast any outgoing 𝐸𝑣𝑒𝑛𝑡s

• If the 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 returned any, we broadcast them



𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
• Processing Events

• Handle the 𝐸𝑣𝑒𝑛𝑡 based on the 𝑠𝑒𝑛𝑑𝑒𝑟

• We already know that this 𝐸𝑣𝑒𝑛𝑡 is meant for us, but now we can 
determine WHO sent it.

• Handle how to process the 𝐸𝑣𝑒𝑛𝑡 based on 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟

• Since we know WHO sent it, we can use the sender’s constants to 
determine WHAT it is.

• Process the 𝐸𝑣𝑒𝑛𝑡

• Since we know precisely WHO and WHAT, we know HOW we can 
process it.

• Reactively send 𝐸𝑣𝑒𝑛𝑡s

• If it warrants it, we can send our own 𝐸𝑣𝑒𝑛𝑡s, or none

• Can return zero element with 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒. 𝑒𝑚𝑝𝑡𝑦 .

• What about UI Events

• Note: Only the UI Thread may interact with the UI

• An 𝐸𝑣𝑒𝑛𝑡 that requires updating the UI may be enqueued to the 
AWT Dispatch Thread’s Event Queue

• This is handled asynchronously with respect to our worker thread

• UI Events are dispatched sequentially and in encounter order

• We do not need to wait for the UI Thread to finish it’s work, as they 
will be performed in the order they are added

• Not a race condition



Event Sourcing
• Logging

• Log files contain the exact sequence of events that occur in the system

• Describes WHEN the event occurs, WHO sent it, WHO is the intended receiver, and WHAT the event is.

• Makes it easier to debug problems that potential clients may face

• Easy for me to determine where and what caused the issue by examining the log file



Example:
Selecting a File

1. User Selects a new file in PropertyFiles

2. PropertyFiles notifies MarkupProperties of file 
name

3. MarkupProperties notifies PropertyAttributes to 
clear back to default state.

4. MarkupProperties notifies PropertySelector to 
clear it’s adapter of all entries (as they are no 
longer valid)

5. MarkupProperties notifies MarkupController of 
file name

6. MarkupController checks if a previous session 
for this File exists.
• If yes, goto 7, else goto 9

7. MarkupController notifies MarkupProperties of 
a list of Markups to restore the state of

8. MarkupProperties notifies Selector to add all 
entries to it’s adapter (in lexicographical order)

9. MarkupController notifies MarkupView with file 
contents and markup highlight bounds if 
applicable

10. MarkupView passes a syntax highlighted version 
of the file contents to it’s view-model and adds 
highlighting for all sent highlight offsets.



Conclusion
Final Words and Thoughts



Software Engineering
• A simple idea becomes that much more when production is on the line

• Bugs, error handling, arch-specific issues, etc.
• “That doesn’t happen when I run it on my machine”

• Maintenance
• The job isn’t over once it is released

• New features need to be added
• Bugs need fixing

• It isn’t always “fun”
• Even if there is nothing new to learn, the obligations still remain
• Spent 250+ hours on this

• Lost interest about 1/5 of the way
• Still had to do it

• Not something I want to do again
• At least not unpaid…
• Solidified my resolve to go to graduate school for my PhD

• Prefer theory anyway



Final Thoughts

• Code-Glosser took a long time to make, but if people use it, then it 
was worth it
• A lot of thought was put into its design

• A lot of time was put into its implementation

• Distribution
• https://github.com/LouisJenkinsCS/Code-Glosser/releases

• Bug Reporting and Feature Requests
• File an issue using GitHub’s bug tracker

• https://github.com/LouisJenkinsCS/Code-Glosser/issues

https://github.com/LouisJenkinsCS/Code-Glosser/releases
https://github.com/LouisJenkinsCS/Code-Glosser/issues

