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Presentation Schedule (≈15 Minutes)

• Discuss and Run the Virtual Machine first
• <5 Minutes

• Syntax, Binding & Scope, Data Types, Control Flow, and Subprograms
• <10 Minutes

• +Code Snippets

• Future goals and plans
• 1 minute



Virtual Machine
• Does

• Accept and parse .class files
• Can be generated by any JVM Language

• Examples shown are generated from Scala and 
Java

• Interpret a subset of ByteCode instructions
• Loads, Stores, Arithmetic

• Basic I/O support, Support for conditional 
expressions
• ‘if…else if… else’, ‘for’, ‘while’

• ‘for’ only supported in Java

• Scala generates more complex bytecode

• Does Not
• Contain a garbage collected heap

• Variables exist on the stack only

• Support side-effects
• Only computations that operate purely on 

the operand stack and local variables work
• I.E: An object that is duplicated on the stack 

are two different objects, and not a pointer 
to the heap (yet)

• Support multi-threading
• Monitors are not implemented

• Have exception handling
• Although relatively trivial to implement

• Load the runtime
• Relies on stubbed pseudo-implementations

• I.E: 𝑝𝑟𝑖𝑛𝑡𝑙𝑛 uses Haskell’s built-in 𝑝𝑢𝑡𝑠𝑡𝑟𝑙𝑛



Syntax
Currying, Function Declaration and Definition, Pattern Guards, and Function Calling



Currying
• The translation of an ‘uncurried’ function taking a tuple of arguments, into a 

sequence of functions taking only a single argument

• Example
• 𝑓 𝑥, 𝑦 = 𝑧 ≡ 𝑓: 𝑥 → 𝑦 → 𝑧

• The function 𝑓 takes 𝑥 as the input, and returns a function 𝑓𝑥: 𝑦 → 𝑧.
• Note that the arrows are right associative, so 𝑥 → 𝑦 → 𝑧 ≡ 𝑥 → 𝑦 → 𝑧



Function Syntax
• Functions take arguments as arrows

• Considered the ‘Curried’ form of function 
application

• Declaration arrows represent the types, but the 
names are decided in the definition

• Pattern Guards
• Determine which function definition to call 

based on predicate
• Represented with the ‘|’ character

• Functions arguments are passed sequentially
• To disambiguate the function arguments, 

they can be wrapped in … , or have the ‘$’ 
operator appended after the function.



Binding & Scope Rules
Unlimited Extent, Lambdas, Lazy Evaluation, Thunks, and more…



Binding & Scoping 
Rules

• Referential Transparency

• Variables defined are immutable

• With some exceptions…

• Since they are immutable, their outputs are 
always deterministic

• Variables have Unlimited Extent

• They exist for as long as they are referenced

• Even variables of lambdas

• Lazy-Evaluation

• Computations are delayed inside of ‘thunks’

• Thunks contain ‘lazy’ computations that are only 
evaluated when needed.

• Immutability

• All data is immutable, with some exception

• The IO Monad needs side-effects to interact with 
the ‘RealWorld’

• I.E: Printing to the console is a side-effect

• ‘IORef’, ‘STRef’, ‘MVar’, ‘Tvar’, etc., all can 
maintain references to immutable to data that 
can be changed to point something else

• Special Case: Software Transactional Memory

• Underlying data is still immutable



Control Flow
Functors, Applicative Functors, ‘Lazy’ Recursion and Evaluation, and Monads



Functors - Simplified
• A container for values that allow 

mapping of each of it’s values from one 
‘category’ to another.
• Category: Collection of Objects

• I.E: Sets

• Example: Adding some constant to all 
elements in a list
• +1 < $ > 1. . 100 ≡ 2. . 101



Applicative Functors - Simplified
• A type of functor that allows partial 

applications
• Partial Applications of Functions discussed 

later

• Why?
• What if we want to add two functors

together?
• + < $ > 𝐽𝑢𝑠𝑡 2 ≡ 𝐽𝑢𝑠𝑡 2 + ∷ 𝐽𝑢𝑠𝑡 𝐼𝑛𝑡 → 𝐼𝑛𝑡

• 𝑓𝑚𝑎𝑝 requires 𝑎 → 𝑏 , not 𝑓 𝑎 → 𝑏 as the 
mapping function

• Applicative does exactly that
• + < $ > 𝐽𝑢𝑠𝑡 2 <∗> 𝐽𝑢𝑠𝑡 2 = 𝐽𝑢𝑠𝑡 4



Monads
• A type of functor that allows “chaining” 

operations.
• “Chaining” operations can be done using “bind”, 

represented as ≫=
• Allows you to form “pipelines” of instructions

• Simulate side-effects

• Example: Processing User Input
• 𝑔𝑒𝑡 ≫= 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ≫= 𝑤𝑟𝑖𝑡𝑒

• Obtain the input 𝑆𝑡𝑟𝑖𝑛𝑔 with 𝑔𝑒𝑡
• 𝑔𝑒𝑡 ∷ 𝐼𝑂 𝑆𝑡𝑟𝑖𝑛𝑔

• 𝑚 = 𝐼𝑂, 𝑎 = 𝑆𝑡𝑟𝑖𝑛𝑔

• Process the input 𝑆𝑡𝑟𝑖𝑛𝑔 with 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
• 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ∷ 𝑆𝑡𝑟𝑖𝑛𝑔 → 𝐼𝑂 𝑆𝑡𝑟𝑖𝑛𝑔

• 𝑚 = 𝐼𝑂, 𝑎 = 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑏 = 𝑆𝑡𝑟𝑖𝑛𝑔

• Write the processed 𝑆𝑡𝑟𝑖𝑛𝑔 with 𝑤𝑟𝑖𝑡𝑒
• 𝑤𝑟𝑖𝑡𝑒 ∷ 𝑆𝑡𝑟𝑖𝑛𝑔 → 𝐼𝑂

• 𝑚 = 𝐼𝑂, 𝑎 = 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑏 =

• How is this different from normal imperative 
programming?
• There are no side-effects. The 𝑆𝑡𝑟𝑖𝑛𝑔 in each step is 

never mutated, but it appears as if it did!



Control Flow (Recursion)
• Recursion

• Any and all ‘iteration’ is performed through 
recursion

• Why?

• Iteration requires mutation of some variable

• All variables are immutable

• Infinite recursion is actually ‘safe’
• Used to produce infinite data streams

• Recursive calls only called when needed

• Example: Obtain first 𝑛 Fibonacci Numbers
• 𝑓𝑖𝑏𝑠 = 0 ∶ 1 ∶ 𝑧𝑖𝑝𝑊𝑖𝑡ℎ + 𝑓𝑖𝑏𝑠 𝑡𝑎𝑖𝑙 𝑓𝑖𝑏𝑠

• 𝑡𝑎𝑘𝑒 𝑛 𝑓𝑖𝑏𝑠

• Result of each call to 𝑓𝑖𝑏𝑠 is stored as evaluated 
inside of a thunk. The function used           
𝑧𝑖𝑝𝑊𝑖𝑡ℎ ∷ 𝑎 → 𝑏 → 𝑐 → 𝑎 → 𝑏 → 𝑐

applies the function to the head of both lists (I.E: 
The last two values evaluated). 𝑡𝑎𝑘𝑒 will force it to 
evaluate only up to 𝑛 times and collect the result.



Data Types
Type-Classes and deriving/instantiating them



Data Types
• Type Classes
• Constructs that define methods

• Even arithmetic operators are methods

• Can sometimes be automatically derived

• Only if the objects they are composed of all are instances of it

• Can be used for type constraints of polymorphic functions

• Specify that the generic type must implement the listed types

• Have ‘data constructors’

• Remember: Same as a normal function

• Can have ‘field selectors’

• Can have a ‘default’ values of undefined

• Defined as ⊥, or ‘bottom’

• Also used for non-terminating functions and runtime errors

• All types have this value in common

• Can be instantiated by data types

• Must implement required methods



Subprograms and Parameter 
Passing

Partial Applications of Functions (in theory and practice)



Partial Application of Functions (in Theory)
• Applying an argument to a function taking more than one argument, resulting in 

a function taking one less argument
• Remember Currying 

• 𝑓 𝑥, 𝑦 = 𝑧 ≡ 𝑓: 𝑥 → 𝑦 → 𝑧 ≡ 𝑓: 𝑥 → 𝑦 → 𝑧

• Application: 𝑓 𝑥 ≡ 𝑓𝑥: 𝑦 → 𝑧
• ‘Applying’ 𝑥 to 𝑓 will result in a function 𝑓𝑥 that takes the remaining arguments…

• In Haskell, all function arguments are applied this way!
• Since all variables have unlimited extent, applied arguments are always safe to use!

• Example: The addition/plus binary operator…
• + ∷ 𝐼𝑛𝑡 → 𝐼𝑛𝑡 → 𝐼𝑛𝑡

• + 1 ∷ 𝐼𝑛𝑡 → 𝐼𝑛𝑡
• + 1 1 ∷ 𝐼𝑛𝑡



Subprograms and 
Parameter Passing

• Partial Application of Functions (in Practice)

• Data Constructors for a type are just functions, 
and like such can be partially applied

• With a combination of the results from 
𝑔𝑒𝑡𝑁𝑒𝑥𝑡∗, which returns a 𝑃𝑎𝑟𝑠𝑒𝑟 𝑊𝑜𝑟𝑑∗, that 
result can be passed to the data constructor 
through application.

• Why is this important?

• Arguments can be passed from functors

• Arguments can also be passed by value 

• Cuts out the amount of boilerplate 

• Functions Composition

• The ‘.’ operator denotes function 
composition.

• 𝑔. 𝑓 𝑥 ≡ 𝑔 ∘ 𝑓 𝑥 = 𝑔 𝑓 𝑥

• Pronounced 𝑔 “after” 𝑓 of 𝑥

• . ∷ 𝑏 → 𝑐 → 𝑎 → 𝑏 → 𝑎 → 𝑐



Virtual Machine – Plans and Goals

• Implement a Heap that takes advantage of Haskell’s GC

• Implement all ByteCode Instructions
• Bootstrap Classloading

• Monitors

• Exception Handling

• Refactor, Refactor, Refactor…
• Needs vast improvements!


