
Louis Jenkins Mobile Development
 Final Project Report

1

S.A.K-Overlay
Swiss-Army-Knife Overlay

The Original Window Manager for Android

By: Louis Jenkins

Louis Jenkins Mobile Development
 Final Project Report

2

Opening Notes

 It should be noted that just because the date shows that this report was

created on the day it is due, does not mean that I was lazy with it. In fact,

the reason is the opposite. As of now (and most likely when this is turned in

today), there is almost 2,250 lines of code, with almost 1,000 lines of

documentation, that’s explicitly Java code (hence not including /res folder).

 The application is far from complete, however it is also far from unfinished.

What I mean is, this application is my embodiment of hard work and, in my

opinion, creativity. To give an estimate, the amount of time spent in from

of the programming this one project, is at least 300 hours, and going on

400. That doesn’t include the multitude amount of hours I spend

researching and thinking up ideas/implementations for said ideas, which

can easily rival 500 hours. Mainly the time spent not programming, was

either doing homework, sleeping, or research.

 The application, while large, is very well documented, and should be very

readable. It makes use of third party libraries, which are attached to the

project, and hence you should not have any issues running it. I have tested

it on the computers in class, and hence works perfectly.

 It requires API level 21, as I did not have time to add conditional

compilation. Hence your Nexus tablet MUST be updated to API level 21.

This application will not work well in an emulator. JSON serialization

requires data storage, and google maps requires the API and of course

Location. Also while the application has been optimized to run buttery

smooth on the Nexus 7, I cannot guarantee that you will experience

degraded performance on an Emulator.

o If you do not want to upgrade your Nexus 7 tablet due to the

slowness Lollipop brings for the Nexus 7, the issue is related to

Google Now’s indexing of applications. If you go through Google

Settings -> Search and Now -> Tablet Search -> Uncheck everything,

or at the very least Apps. This brings back the performance of KitKat.

Louis Jenkins Mobile Development
 Final Project Report

3

Introduction

 What is S.A.K-Overlay
o A Dynamic Tiling Window Manager

 Session Manager

 Restore and Create user sessions

 Widget Manipulation

 Snap

o Allows user to snap widgets to both sides and corners

 I.E Upper Right, Bottom Left, etc.

 Maximize & Minimize

 Move & Resize

o Allows user to drag Widgets across the screen

o Allows user to resize the Widget

 Drag bottom left corner

o Bounds checking

 Ensures Widgets always remain in bounds

 What does S.A.K-Overlay offer

o Widgets

 Sticky-Note

 Allows user to write notes to be recorded later.

o Contents maintained across sessions

 Google Maps

 Allows user to retrieve their current location

o Shows user their address

 Web Browser

 Allows the user to browse the web

o Also allows navigation through current history

 Screen Recorder

 Allows user to video record their screen as well as external audio

o Audio optional and Screen resolution adjustable

 Default to audio enabled and max resolution

 Allows user to control audio through a “Floating” Widget

o Visible even when application sent to background.

o InfoBar

 Multi-purpose

 Used for alert, status updates, contextual changes

o In the future, it will also be used for menu options

Louis Jenkins Mobile Development
 Final Project Report

4

 Practical uses of S.A.K-Overlay?
o Multi-tasking

 Allows user to have multiple, persistent widgets, aligned however they

want
o Can be launched anywhere

 A “Home Screen” away from the Home Screen.
o Designed with gaming in mind

 Seamlessly go between gaming and S.A.K-Overlay
 Begin and end recording without ever leaving the game
 Browse the web while you play
 Lost? Not anymore with our Google Maps Widget.
 Need to note something down but no paper nearby? Use Sticky Note
 Trivia

 This app was originally meant to emulate Steam’s overlay,

allowing the user to answer Text Messages (Like Steam

messages), browse the web, etc.
o Now I plan to do that and more!

Louis Jenkins Mobile Development
 Final Project Report

5

 Significant Features Checklist
o Graphics and Animation

 Note, I count this as an animation, but it’s debatable. Technically, we do

not use any Animation objects, however we do have quite a few features

which could count as animation. In fact, if I had used

View.getAnimator().translateX() instead of View.setX(), it would have

done the same. Up to you whether you count it.

o Dynamic UI with Fragments

 Widgets are placed inside of a custom fragment, called FloatingFragment,

which handles its own custom life cycle, deserialization/serialization,

setup, cleanup, etc., as well as the manipulation of the Widgets discussed

here.

o Data Storage

 Sessions are preserved as best they can, whenever onPause() is called

and restored in onCreate(), hence allowing persistent apps. Utilizing JSON

makes it not only easy to write and parse back out, but also drives home

just how powerful the language is.

o Geolocation and Maps

 GoogleMapsFragment does use Google Maps, but as of now it is very

proof of concept, like all other things, however to be fair, it does have

some functionality. Like stated above, it does track the user’s current

location and show them name of the street/address they are currently at.

Louis Jenkins Mobile Development
 Final Project Report

6

User Experience

UI – Sessions

In Process of Restoring Previous Session

This is the main layout of S.A.K-Overlay. Depending on whether or not you have a previous session, it

will either let you know it is “Restoring” or “Creating” a session.

Louis Jenkins Mobile Development
 Final Project Report

7

In Process of Restoring State

(This was actually very tricky to do because everything restores so fast, even on a slow device like

Nexus 7… I suppose that’s a good thing)

As can be seen here, the Widgets are created, and before they are “restored”, they can be seen for a

brief moment, like such here.

Louis Jenkins Mobile Development
 Final Project Report

8

Finished Restoring Session & State (Extremely fast)

Notice the InfoBar’s “Session restored!”, indicating it has finished everything. Also notice the text on the

Sticky Note, restored from previous session. As of yet the browser does not restore the web page nor its

history, but it will in the future.

Louis Jenkins Mobile Development
 Final Project Report

9

New sessions

If there is no previous session on file or if an error occurs while parsing the file, a new session is created

instead.

Louis Jenkins Mobile Development
 Final Project Report

10

UI – Widgets

Application Menu Dropdown

When the grayed app icon is clicked, a dropdown listing all applications is shown. In the future, other

options will be added as well, such as “Close”, “New Session”, “Settings”, etc.

Louis Jenkins Mobile Development
 Final Project Report

11

Web Browser Home

This is the simple and minimal Web Browser implemented. I’ll mention it once, but notice the InfoBar

mimics the Widget’s Title. This was implemented as a proof of concept for contextual dropdown menu

based on the current selected Widget.

Louis Jenkins Mobile Development
 Final Project Report

12

Web Browser – History

As can be seen, the back and forward buttons do appear based on user’s current session history.

Louis Jenkins Mobile Development
 Final Project Report

13

Google Maps

The Google Maps Widget currently only shows the user’s current location and address, but in the future

will be able to show nearby stores, gas stations, and points of interest.

Louis Jenkins Mobile Development
 Final Project Report

14

Sticky Note

The Sticky Note Widget allows users to jot down their ideas or notes on the go, and persists over

sessions. As of yet, it cannot save or load its contents to/from disk, but it’s not far off from doing so,

especially when contextual menu options are implemented.

Louis Jenkins Mobile Development
 Final Project Report

15

Screen Recorder

The Screen Recorder Widget. Unfortunately, the Hour duration is off by 19 hours, however other than

that, the minutes and seconds are 100% accurate.

Louis Jenkins Mobile Development
 Final Project Report

16

Screen Recorder – Dialog

The dialog that pops up when the user selects start. By default, the max resolution is chosen, audio is

enabled, and .mp4 is given as the extension.

Louis Jenkins Mobile Development
 Final Project Report

17

Screen Recorder – Controller

The minimal Screen Recorder Widget’s background controller. Its lifetime is tied to the Screen Recorder

Widget’s, but that doesn’t mean it has to be tied to its container as well.

Louis Jenkins Mobile Development
 Final Project Report

18

UI – Misc

Notification

Offers a simple notification that lets you launch the overlay from wherever you are.

Louis Jenkins Mobile Development
 Final Project Report

19

Implementation

Note

The implementations are summarized below, however the details can easily be found in the

documentation of the project.

 Screen Size issue

o A big issue with Android, but also its greatest, is the fragmentation of devices.

 According to OpenSignal, there are over 24,000 unique Android devices

 Each easily able to vary in screen size and resolution

o Attempted solutions

 Use weighted views

 Does not work since Widgets are dynamically resizable

o I.E, the size of the title bar should remain consistent

 If the screen size is reduced in size enough, the title

bar will be impossible to use

 Directly scale the view based on the desired size

 Means having to resize each child a second time whenever user

resized the Widget

o Too slow

 Scale down views based on the “perfect” screen size with setScale*

 Best solution so far

o But has a lot of consequences

 Each view is scaled inside of the original width and height

o Means the reported height and width are wrong

 Hence touch events need to be adjusted

accordingly

o Leads to complicated math and code, but can be dealt

with

 Persistence Problem

o When the user shuts off their phone or ends the application themselves,

onSaveInstance Bundle gets destroyed.

 Very bad for UX

o Attempted solutions

 Use Parcelable or Serializable interface

 They are not designed for persistence, merely for IPC

 Directly serialize the view ourselves

 JSON

 Best solution so far, but has complications

Louis Jenkins Mobile Development
 Final Project Report

20

o Each element is serialized and deserialized to/from

Stringified format

 Not all things can be made to String

o Future solution

 Use a configuration file to describe how it should

be parsed

 Using ClassLoaders and reflection

 Widget bounding

o With Widgets being moved by the user, it is extremely easy for it to go out of

bounds, even when an Orientation Change occurs.

o Attempted Solutions

 Check whenever user moves the view or resizes, that it does not go out of

bounds

 Scaled views make this difficult, as the actual width and height are

inaccurate.

o Still do-able with extra math and logic

 Current solution so far, open to suggestions

 Screen Recording in background

o While the screen recorder does continue in the background, the user would have

to reopen the app. No matter how “Seamless” I make it, it is unnecessary

o Attempted Solutions

 Notification

 Can allow me to add buttons

o Not implemented yet, but having to pull down Notification

bar to stop it may cause user to lose focus of what they

are doing.

 WindowManager controller

 Add a view that acts as controller to the Window Manager

o Drawn on top of any other apps

 Future issues

 Starting with Android Marshmallow, things

like these will require a specific permission

which cannot be asked for, and needs the

user to go to Settings menu and enable. Not

reliable and can annoy the user, spoiling UX.

 Current solution

 Coupling issue

o Communicating through multiple difference classes can be difficult, especially

when threading is involved. It goes without saying, when every object knows

Louis Jenkins Mobile Development
 Final Project Report

21

each other, removing that object can cause problems, even with Android

Studio’s refactoring, this leads to overly complicated code, I’ll give an example

 Intents

 Impossible to send objects, even locally, which cannot be

serialized or parceled.

 No way of knowing if the message is received.

o And sending/receiving requests/responses is extremely

messy and complicated.

 Need a key for each extra, meaning another global constant

o Also need to instantiate another object just to send locally.

 LocalBroadcastManager

 Requires a context to retrieve

o Pretty much forced to pass the Context from an Activity or

Fragment

 Can leak the entire Activity if threaded and runs

even after the Activity has died

 Can be remedied with WeakReferencing

o Overly complicated and generalized

 Requires an Intent to send each time

o Solution

 RxBus

 Implemented event bus built on top of RxJava

 Can register to receive events

o Meaning objects of a certain class

 I.E, registering for String.class, means you intercept

any String objects sent

 Can send objects directly as events

o Even non serializable/parcelable ones

 Anonymous events

o Classes that sends events do not need to know who sent

what and to where.

o Static context

 Can be called anywhere, from any class, any

thread, etc.

 Thread safe through RxJava

Louis Jenkins Mobile Development
 Final Project Report

22

Bugs

Notes

While some of these bugs are my own fault and are being ironed out (and would have been

given more time), there is one pressing bug which I have no control over, and definitely should

be mentioned.

 Hardware/Native OS Bug

o In ScreenRecorder, sometimes when calling MediaRecorder.reset() and/or

MediaRecorder.stop(), a race condition for the FrameBuffer’s mutex

 "118-118/? E/gralloc﹕ GetBufferLock timed out for thread 118 buffer

0x18 usage 0x200 LockState 1"

 Causes device to become complete unresponsive unless restarted

 Software Bug

o After moving from maximized or snapped state, the size restores to normal,

however the because of this, the width and height are also changed so the

original touch offset becomes inaccurate. I have made numerous attempts to fix

it, but I have not been able to in time. Other than that, moving and resizing views

work fine.

o If the application is started and if the screen gets turned off, it throws an

IllegalStateException because the AsyncTask is still executing and attempts to

call FragmentTransaction.commit()

 This is because you cannot add new fragments while the application is in

the background, and unfortunately it does not queue up fragments to be

done after app restores to the foreground.

 Can be remedied in the future by not calling it while onPause is

paused by keeping an atomic flag, however,

FragmentTransaction.commit() is not an atomic operation, so it

may throw the exception anyway.

 Of course, since serialize() is called in onPause(), it fails to finish it’s write

and ends up deleting the old file, deleting the user’s session data.

 Can be prevented at least waiting until the FloatingFragments have been

deserialized before changing applications or locking the device.

Louis Jenkins Mobile Development
 Final Project Report

23

Misc

Notes

This is the only note here. I barely finished this in time, and it may not be as good as I expected

it to be, however given the time constraints, I’d say it came out pretty well. Once again,

the project is very well documented, and the specifics are explained in the

documentations and javadocs. Of course I understand you have a LOT of applications to

grade, and this app is most likely the biggest one in class, I just hope you have as much

fun using/grading it as I had creating/writing it. It was a very fun semester.

Lastly, I’ve been updating it on GitHub the entire time as it is a personal project I plan on

continuing, and can be seen here. https://github.com/theif519/S.A.K-Overlay

https://github.com/theif519/S.A.K-Overlay

