Language Desigh and
Optimizations

By — Louis Jenkins

Presentation Summary

* Create our own programming language

* Demystify and Explore how they are created
* Grammars, Lexers, Syntax Trees, etc.

* Define semantics for our language
* Interpret and run programs written in our language

* High-Level overview of program execution
* Control Flow Graphs

Defining Our Language

* Domain Specific Language
e Language created to solve a particular problem domain
* Our domain is academic research

* Opposite of a general-purpose language
* C, C++, Java, Go, etc.

* Grammars
» Defines our actual language

* Lexers tokenizes input defined in the grammar
* Lexer is also known as scanner or tokenizer
* Determines syntactic correctness

* Parsers infer meaning from sequences of tokens
* Also determine syntactic correctness

Lexer and Parser provide different granularities in providing syntactic correctness.

Building the Parser

* YACC

* Yet Another Compiler Compiler
* A LALR Parser generator
* Look Ahead Left To Right

* Can look ahead K symbols to determine the right action to take.
e Reads in BNF grammar

* Backus-Naur Form is a context-free grammar capable of defining any language
* Also known as meta syntax that can even define itself.

 Shift-Reduce Parser
 Shift pushes the symbol on the stack

* Reduce combines the symbols on the top of the stack into a single symbol if it
satisfies a grammar rule.

* |s a push-down automaton

if (tok.startsWith("\"")) {

The Grammar Pt.1

* Lexer

* Also known as a scanner or tokenizer

e Deals with parsing characters into streams of tokens
* Tokens are the primitives that make up a language

 Example: ‘var’, ‘this’ ‘if, ‘else’, ‘while’, ‘for’

* Tokens are also referred to as lexemes

* Determines syntactic correctness
 If input cannot be tokenized, it is syntactically invalid.

oken = INTEGER;

if (tok.equals(“var")) {
String t = tokens.element();

if (t == null) {

yyerror("Need NAME after 'var'");

oken = F‘I‘*‘.T”T.;

yyerror(“Need EXPR a

eturn token = WHILE;

The G rammar Pt 2 prog : prog stat { 5 = $2; $%.execute(); ASTEraph.praph($$);)

| stmt { $% = %1; $%.execute(); ASTGraph.graph(%%);}
| /* Empty */

e Semantics ;

¢ Parser ExpreSS|onS conditional : WHILE expr block { $% = new WhileConditionalASTNode($2, $3); }
* Snippets of code called upon reduction :
* Define semantics stmt : VAR NAME '=' expr ';' { $$ = new DefinitionASTNode($2, $4); }
* Create our Abstract Syntax Tree here R ﬁ[;l’“’ ;" AssignmentASTiode(31, $3);)

| NAME '=" expr '

I
* Each node has defined with it semantics | PRINT expr ';' { $% = new PrintASTNode($2); }

| ¥

error '

* Has an Action

»

* AdditionBinaryASTNode performs type
checking and handles addition of both stmt_list : stmt stmt_list { ((StatementASTNode)$2).body.add(®, $1); $% = $2;)
expression operators. | /* Empty */ { $% = new StatementASTHode(); }

block : "{" stmt list "}' { $% = $2; }

.
»

expr : expr '+' expr { $% = new AdditionBinaryASTHode($1, $3); }
expr "-" expr { $% = new SubtractionBinaryASTNode($1, %£3); }
new MultiplicationBinaryASTNode($1, $3); }

|
| expr "*" expr { %%
| expr /" expr { $% = new DivisionBinaryASTNode(%$1, $3); }
| expr EQ expr { $% = new EqualBinaryASTNode($1, %3): }

| (" expr ')' { 88 = $2; }

| INTEGER { %% = $1; }

| STRING { $% = $1; }

| NAME { $% = $1; }

varx =10,
vary=x+1,
varz=y+2
primt X " +x+" Y. "+y+" LT+
while (x) {
x=x-1;

Abstract Syntax Tree

PROGRAM

Tree representation of the syntactic structure of a
program

* Each node represents some constant in the
LI ; : § i source code
Why is it Abstract

* Does not contain all details, only what is
important

7 [F e Difference between ‘+’ and
‘AdditionBinaryASTNode’
Applications and Uses
e “Walking” the syntax tree
e Also known as the ‘visitor’ pattern

* Allows us to make interesting observations
and compile-time checks

* Type-Checking, Definitions, Etc.
* Could even be interpreted

DECL DECL DECL PRINT WHILE

7 7 5 T i E FRINT]

Interpreter — Executing our Language

* Symbol Table
* Mapping from a name to it’s symbol
* In the interpreter, the symbol keeps track of it’s value

* We do not support lexical scoping
* Only one instance of a variable name can exist in the program at one time.

e ‘Visitor’ execution

* Walking the tree allows us to obtain the structure of the program
* This structure can be used to interpret the intent behind the original instructions and executed

* Similar style can be used to construct the Control Flow Graph
* Each root of a statement subtree can be used to reconstruct the intent of the original statement
e Each statement is a node with an edge to the next statement node.
* But what about loops and conditional statements?

Control Flow Graph

* A directed graph that shows flow of control
from one statement to another

* Normal statements, Conditional Statements, Loops

e Basic Blocks

* Sequence of statements that are dominated by a
predecessor

* Astatement s; is said to dominate s, if all path of
execution must flow through s; to reach s,

e Denoted s; dom s,
* A basic block is a sequence (sq, S5, ..., S;,) such that
Vie[1l,N—1] s;dom s;,,
* A Control Flow Graph composed solely of basic
blocks is said to be a reduced control flow graph.

PROGRAM-START

Y

varx =10
vary =x + 1
varz=y + 2

DRAL RS e S i S
v
while (x)
J A
Y
X=x-1

\ 4
‘PROGRAM-END

print "x:" + x

Live Demo — Screenshot

Language Test — Duft’s Device

e Duff’s device is a loop unrolling optimization that reduces the number
of conditional evaluations in a loop

* By unrolling the loop, we do not need to explicitly check on each pass

e |.E: 1000 checks vs 1000 / N checks
* N is the amount of the loop duplicated/unrolled on each iteration
* In most cases 8

* Trade-Off
e Larger program size

e The Test

* Implement loop unrolling in our language as the ultimate test
* Tests everything needed to prove we are Turing Complete

Turing Completeness

* A language is Turing Complete if it can simulate a single-tape Turing-Machine

* read and write values to a tape

* Variables do precisely this.

* Given a variable X and a tape position Y, then the concatenation of the variable and position XY can store
information at that tape position.

e 15t Tape Position: X1
« N Tape Position: XN
* To maintain state, a variable g can be defined

* Act conditionally based on current state and tape contents

* Conditional statements do precisely this.
* Wrap in a while loop
* Now we can simulate the halting problem
e Chain if-else statements to check current state
* Read and write variables and transition states as needed

* Our Domain Specific Language is Turing Complete

Conclusion

* Recap
* Created our own language by defining it’s grammar

* Created the Abstract Syntax Tree from the grammar
* Interpreted and ran ACTUAL code in our language by walking the syntax tree

* Created the Control Flow Graph
e Reduced it into basic blocks, handles loops and conditionals

* Established Turing Completeness of our language

e Was it fun?
* Yep

* Taught myself everything in a compiler design course

