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Presentation Summary

• Create our own programming language
• Demystify and Explore how they are created

• Grammars, Lexers, Syntax Trees, etc.

• Define semantics for our language

• Interpret and run programs written in our language

• High-Level overview of program execution
• Control Flow Graphs



Defining Our Language
• Domain Specific Language

• Language created to solve a particular problem domain
• Our domain is academic research

• Opposite of a general-purpose language
• C, C++, Java, Go, etc.

• Grammars
• Defines our actual language

• Lexers tokenizes input defined in the grammar
• Lexer is also known as scanner or tokenizer

• Determines syntactic correctness

• Parsers infer meaning from sequences of tokens
• Also determine syntactic correctness

• Lexer and Parser provide different granularities in providing syntactic correctness.



Building the Parser

• YACC
• Yet Another Compiler Compiler
• A LALR Parser generator 

• Look Ahead Left To Right
• Can look ahead K symbols to determine the right action to take.

• Reads in BNF grammar
• Backus-Naur Form is a context-free grammar capable of defining any language

• Also known as meta syntax that can even define itself.

• Shift-Reduce Parser
• Shift pushes the symbol on the stack
• Reduce combines the symbols on the top of the stack into a single symbol if it 

satisfies a grammar rule.
• Is a push-down automaton



The Grammar Pt.1

• Lexer
• Also known as a scanner or tokenizer
• Deals with parsing characters into streams of tokens

• Tokens are the primitives that make up a language
• Example: ‘var’, ‘this’, ‘if’, ‘else’, ‘while’, ‘for’

• Tokens are also referred to as lexemes
• Determines syntactic correctness

• If input cannot be tokenized, it is syntactically invalid.



The Grammar Pt. 2
• Semantics

• Parser Expressions
• Snippets of code called upon reduction

• Define semantics

• Create our Abstract Syntax Tree here

• Each node has defined with it semantics

• Has an Action

• AdditionBinaryASTNode performs type 
checking and handles addition of both 
expression operators.



Abstract Syntax Tree

• Tree representation of the syntactic structure of a 
program
• Each node represents some constant in the 

source code

• Why is it Abstract
• Does not contain all details, only what is 

important
• Difference between ‘+’ and 

‘AdditionBinaryASTNode’

• Applications and Uses
• “Walking” the syntax tree

• Also known as the ‘visitor’ pattern
• Allows us to make interesting observations 

and compile-time checks
• Type-Checking, Definitions, Etc.
• Could even be interpreted



Interpreter – Executing our Language
• Symbol Table

• Mapping from a name to it’s symbol
• In the interpreter, the symbol keeps track of it’s value

• We do not support lexical scoping
• Only one instance of a variable name can exist in the program at one time.

• ‘Visitor’ execution
• Walking the tree allows us to obtain the structure of the program

• This structure can be used to interpret the intent behind the original instructions and executed

• Similar style can be used to construct the Control Flow Graph
• Each root of a statement subtree can be used to reconstruct the intent of the original statement

• Each statement is a node with an edge to the next statement node.

• But what about loops and conditional statements?



Control Flow Graph

• A directed graph that shows flow of control 
from one statement to another
• Normal statements, Conditional Statements, Loops

• Basic Blocks
• Sequence of statements that are dominated by a 

predecessor
• A statement 𝑠1 is said to dominate 𝑠2 if all path of 

execution must flow through 𝑠1 to reach 𝑠2
• Denoted 𝑠1 𝑑𝑜𝑚 𝑠2

• A basic block is a sequence 𝑠1, 𝑠2, … , 𝑠𝑛 such that
∀𝑖 ∈ 1, 𝑁 − 1 𝑠𝑖 𝑑𝑜𝑚 𝑠𝑖+1

• A Control Flow Graph composed solely of basic 
blocks is said to be a reduced control flow graph.



Live Demo – Screenshot



Language Test – Duff’s Device

• Duff’s device is a loop unrolling optimization that reduces the number 
of conditional evaluations in a loop
• By unrolling the loop, we do not need to explicitly check on each pass

• I.E: 1000 checks vs 1000 / N  checks
• N is the amount of the loop duplicated/unrolled on each iteration

• In most cases 8

• Trade-Off
• Larger program size

• The Test
• Implement loop unrolling in our language as the ultimate test

• Tests everything needed to prove we are Turing Complete



Turing Completeness

• A language is Turing Complete if it can simulate a single-tape Turing-Machine
• read and write values to a tape

• Variables do precisely this.

• Given a variable 𝑋 and a tape position 𝑌, then the concatenation of the variable and position 𝑋𝑌 can store 
information at that tape position.

• 1st Tape Position: 𝑋1

• 𝑁𝑡ℎ Tape Position: 𝑋𝑁

• To maintain state, a variable 𝑞 can be defined 

• Act conditionally based on current state and tape contents
• Conditional statements do precisely this.

• Wrap in a while loop

• Now we can simulate the halting problem

• Chain if-else statements to check current state

• Read and write variables and transition states as needed

• Our Domain Specific Language is Turing Complete



Conclusion

• Recap
• Created our own language by defining it’s grammar

• Created the Abstract Syntax Tree from the grammar
• Interpreted and ran ACTUAL code in our language by walking the syntax tree

• Created the Control Flow Graph
• Reduced it into basic blocks, handles loops and conditionals

• Established Turing Completeness of our language

• Was it fun?
• Yep

• Taught myself everything in a compiler design course


