
S.A.K-Overlay

BY: LOUIS JENKINS

What is S.A.K-Overlay?

 Stands for “Swiss-Army-Knife” Overlay.

 The original all-in-one Overlay AND Window Manager for Android.

 Simple and intuitive Window Manager

 Multitasking

 Dynamic UI

 Widgets

 Resize and Move at will

 Snapping

 Transparent

Why did I choose this for my App?

 Like learning new things

 Explore the UI/UX side

 As well as the low-level backend

 Practical

 Could use it daily, for any given task

 Preferably gaming

 Extremely Fun!!!

 Anything goes!

Third Party libraries

 RxJava and RxAndroid

 React library wrappers for Java and Android

 Turns anything into an Observable or Observer

 Reactor and Observer design pattern

 Extremely efficient and elegant in design

 Mp4Parser

 Allows me to obtain the duration of a video

 Allows me to concatenate two or more videos

RxJava - Terminology Simplified

 Observer

 Observes and listens for an event.

 Observable

 The event itself.

 Subject

 Proxy

 Acts as both an Observer and an Observable

 Used to pass events without being tightly coupled

 Example

 Event Bus

 Broadcast Receiver

 Examples:

 OnTouchListener

 Touch/MotionEvent -> Observable

 Listener/Callback -> Observer

RxJava – Processing Operators

 Operators

 Map

 Transform one item into another

 I.E: y = f(x); Put in X, get out Y!

 Filter

 Using a predicate, filter out unwanted results

 I.E Any numbers greater than or equal to 10

 Subscribe

 When this event finally gets through the operators and past any filters, this gets called

 I.E, the callback after processing is finished

RxJava – Threading Operators

 Operators

 ObserveOn

 The thread the end processed result is called on.

 Via a callback subscribe()

 SubscribeOn

 The thread which handles all preprocessing and processing

 Essentially whether or not to use a background thread

 Schedulers

 IO-Bound

 Optimized for synchronous blocking operations

 CPU-Bound

 Optimized for asynchronous computational operations

What it takes to move a view

 In Android, scaled views are merely scaled

within their original rect/canvas, hence the

actual width and height remain the same,

making interpreting touch events rather

difficult… Example process…

 Obtain initial touch offset

 Determine if view is gesturing in a way that

implies it should snap

 Get delta of difference in actual view size and

scaled view size

 Use this along with the current touch location to
determine where it should move

 Then determine if it is in bounds

 THEN adjust bounds of screen by delta

offset

 THEN finally you can

 Finally, you get where you can move the

view.

RxJava – A More Dynamic UI

RxJava + RetroLambda

(Future Overhaul)

Dynamic UI – What it takes

TouchEventInfo

Plain Old Data

AeroSnap Implementation

Determine Snap Apply Snap

Widgets?
 Sticky-Note

 Allows you to record notes and/or your thoughts

 Web Browser

 Browse the web with a minimal browser

 Google Maps

 Allows you to keep track of where you are, and where you want to go.

 Screen Recorder

 Record those valuable moments !

Serialization – How it works; pt.1
 BaseFloatingFragment

 Keeps track of attributes

 X, Y, Z, Width, Height, etc.

 Handles movement and resizing and overall view manipulation.

 Contains it’s own custom life-cycle methods

 Unpack()

 Unpack any serialized data.

 Posted to view’s handler to ensure it is fully inflated.

 Setup()

 Setup any extra data

 Like Unpack(), posted to content view’s handler.

 CleanUp()

 Called when appropriate to destroy this fragment.

 Serialize()

 Handles serialization of data that needs to be persisted.

 BaseClass handles View state, the subclasses override to include their own.

 Maps each to a String-String ArrayMap.

 Easily marshalling to JSON directly by the Key-Value pair.

Serialization – How it works; pt.2
 Deconstruction and Reconstruction

 Handled from MainActivity

 OnPause()

 Serialize

 OnCreate()

 Deserialize

 Uses AsyncTasks to handle background processing.

 Each Attribute read/written from/to an ArrayMap<String, String>

 Reconstructed from a FloatingFragmentFactory

 By Layout Tag

Deserialization(left) and

Serialization(right)

Floating Fragments

Serialization and

Deserialization

Implementations

• Adds each fragment not just to

FragmentManager, but also

maintains a weak reference list of it’s

own

• Weak Referencing allows Garbage
Collector to collect the

FloatingFragment when it is
supposed to be destroyed

• If WeakReference.get() returns null,

it has been collected and we skip

on, otherwise we obtain an atomic

strong reference and promptly

release.

• Prevents memory leaks

BaseFloatingFragment’s Serialize and Unpack

implementations
• Here you can see the

implementation of serialize and
unpack of the
BaseFloatingFragment.

• As it handles serializing the view

and unpacking it, any floating

fragments that do not need to

bother with serialization at all do

not need to override anything as

it’s already handled.

• Naively expects any such data to
fit as a String.

• Later, if need be, I will add

complexity to handle marshalling

reference types directly.

Screen Recorder; How it works
 Note: There is a critical OS-level bug triggered by a race condition causing the FrameBuffer to

deadlock

 Nothing I can do about this

 Only on Nexus 7 2012 edition on Lollipop (5.1.1)

 Makes device unresponsive until reboot.

 Started from ScreenRecorderFragment

 Bind Service to Fragment

 Fragment can now call stop(), start() and pause()

 Checks if it is possible in current state

 If so, execute

 Service starts foreground notification and creates view

 View gets attached to WindowManager, hence drawn on top of other activities.

Screen Recorder - RecorderState

Screen Recorder -

RecorderCommands

Screen Recorder - Commands

Die & Stop commands Start Command

Drawing Views over other Apps

Future Implementations
 AppWidgetHost

 Remembers your selected app widgets, and automatically binds them for you

 Requires root

 AppHosting

 Host other apps as a FloatingFragment!

 Similar to Dual Screen feature in current versions of Android

 Definitely requires root!

 LazyInflater

 Inflate your own XML at runtime inside of a FloatingFragment

 Or use our Drag and Drop tool to create one the easy way!

 Enhanced Menu Options

 Mac OSX style Menu Options at top of screen

 Meant to have ready by presentation

 An Actual Overlay

 Like the Recorder Controller, have the overlay sit on top of another app, so both apps are always in the foreground.

 Gestures

 Minimize all other windows with a shake! Restore the original state with another!

 ScreenRecorder Buffering And Streaming

 Record your last moments, the efficient way!

 Records the last X minutes of time in either a circular byte buffer or into a mapped byte buffer (mmap)

 Stream your recording over a file descriptor (Easiest way to do it)

Questions?

 FAQ

 Will I be releasing this on the App Store when it is finished?

 Yes, as soon as majority of the bugs are fixed, and the non-root features I
plan to implement are implemented, It will be released

 Probably in about 3 – 4 months

 How much will it cost?

 Nothing, and it will be open source where people may contribute, but not
distribute for money.

 Will there be ads?

 No, I hate ads, and there is no way they will fit in with my app.

 How will I make money?

 Donations. Hopefully.

