
S.A.K-Overlay

BY: LOUIS JENKINS



What is S.A.K-Overlay?

 Stands for “Swiss-Army-Knife” Overlay.

 The original all-in-one Overlay AND Window Manager for Android.

 Simple and intuitive Window Manager

 Multitasking

 Dynamic UI

 Widgets

 Resize and Move at will

 Snapping

 Transparent



Why did I choose this for my App?

 Like learning new things

 Explore the UI/UX side

 As well as the low-level backend

 Practical

 Could use it daily, for any given task

 Preferably gaming

 Extremely Fun!!!

 Anything goes!



Third Party libraries

 RxJava and RxAndroid

 React library wrappers for Java and Android

 Turns anything into an Observable or Observer

 Reactor and Observer design pattern

 Extremely efficient and elegant in design

 Mp4Parser

 Allows me to obtain the duration of a video

 Allows me to concatenate two or more videos



RxJava - Terminology Simplified

 Observer

 Observes and listens for an event.

 Observable

 The event itself.

 Subject

 Proxy

 Acts as both an Observer and an Observable

 Used to pass events without being tightly coupled

 Example

 Event Bus

 Broadcast Receiver

 Examples:

 OnTouchListener

 Touch/MotionEvent -> Observable

 Listener/Callback -> Observer



RxJava – Processing Operators

 Operators

 Map

 Transform one item into another

 I.E: y = f(x); Put in X, get out Y!

 Filter

 Using a predicate, filter out unwanted results

 I.E Any numbers greater than or equal to 10

 Subscribe

 When this event finally gets through the operators and past any filters, this gets called

 I.E, the callback after processing is finished



RxJava – Threading Operators

 Operators

 ObserveOn

 The thread the end processed result is called on.

 Via  a callback subscribe()

 SubscribeOn

 The thread which handles all preprocessing and processing

 Essentially whether or not to use a background thread

 Schedulers

 IO-Bound

 Optimized for synchronous blocking operations

 CPU-Bound

 Optimized for asynchronous computational operations



What it takes to move a view

 In Android, scaled views are merely scaled 

within their original rect/canvas, hence the 

actual width and height remain the same, 

making interpreting touch events rather 

difficult… Example process…

 Obtain initial touch offset

 Determine if view is gesturing in a way that 

implies it should snap

 Get delta of difference in actual view size and 

scaled view size

 Use this along with the current touch location to 
determine where it should move

 Then determine if it is in bounds

 THEN  adjust bounds of screen by delta 

offset

 THEN finally you can 

 Finally, you get where you can move the 

view.



RxJava – A More Dynamic UI



RxJava + RetroLambda

(Future Overhaul)



Dynamic UI – What it takes



TouchEventInfo

Plain Old Data



AeroSnap Implementation

Determine Snap Apply Snap



Widgets?
 Sticky-Note

 Allows you to record notes and/or your thoughts

 Web Browser

 Browse the web with a minimal browser

 Google Maps

 Allows you to keep track of where you are, and where you want to go.

 Screen Recorder

 Record those valuable moments !



Serialization – How it works; pt.1
 BaseFloatingFragment

 Keeps track of attributes

 X, Y, Z, Width, Height, etc.

 Handles movement and resizing and overall view manipulation.

 Contains it’s own custom life-cycle methods

 Unpack()

 Unpack any serialized data.

 Posted to view’s handler to ensure it is fully inflated.

 Setup()

 Setup any extra data

 Like Unpack(), posted to content view’s handler.

 CleanUp()

 Called when appropriate to destroy this fragment.

 Serialize()

 Handles serialization of data that needs to be persisted.

 BaseClass handles View state, the subclasses override to include their own.

 Maps each to a String-String ArrayMap.

 Easily marshalling to JSON directly by the Key-Value pair.



Serialization – How it works; pt.2
 Deconstruction and Reconstruction

 Handled from MainActivity

 OnPause()

 Serialize

 OnCreate()

 Deserialize

 Uses AsyncTasks to handle background processing. 

 Each Attribute read/written from/to an ArrayMap<String, String>

 Reconstructed from a FloatingFragmentFactory

 By Layout Tag



Deserialization(left) and 

Serialization(right)



Floating Fragments 

Serialization and 

Deserialization 

Implementations

• Adds each fragment not just to 

FragmentManager, but also 

maintains a weak reference list of it’s 

own

• Weak Referencing allows Garbage 
Collector to collect the 

FloatingFragment when it is 
supposed to be destroyed

• If WeakReference.get() returns null, 

it has been collected and we skip 

on, otherwise we obtain an atomic 

strong reference and promptly 

release.

• Prevents memory leaks



BaseFloatingFragment’s Serialize and Unpack 

implementations
• Here you can see the 

implementation of serialize and 
unpack of the 
BaseFloatingFragment.

• As it handles serializing the view 

and unpacking it, any floating 

fragments that do not need to 

bother with serialization at all do 

not need to override anything as 

it’s already handled.

• Naively expects any such data to 
fit as a String.

• Later, if need be, I will add 

complexity to handle marshalling 

reference types directly.



Screen Recorder; How it works
 Note: There is a critical OS-level bug triggered by a race condition causing the FrameBuffer to 

deadlock

 Nothing I can do about this

 Only on Nexus 7 2012 edition on Lollipop (5.1.1)

 Makes device unresponsive until reboot.

 Started from ScreenRecorderFragment

 Bind Service to Fragment

 Fragment can now call stop(), start() and pause()

 Checks if it is possible in current state

 If so, execute

 Service starts foreground notification and creates view

 View gets attached to WindowManager, hence drawn on top of other activities.



Screen Recorder - RecorderState



Screen Recorder -

RecorderCommands



Screen Recorder - Commands

Die & Stop commands Start Command



Drawing Views over other Apps



Future Implementations
 AppWidgetHost

 Remembers your selected app widgets, and automatically binds them for you

 Requires root

 AppHosting

 Host other apps as a FloatingFragment!

 Similar to Dual Screen feature in current versions of Android

 Definitely requires root!

 LazyInflater

 Inflate your own XML at runtime inside of a FloatingFragment

 Or use our Drag and Drop tool to create one the easy way!

 Enhanced Menu Options

 Mac OSX style Menu Options at top of screen

 Meant to have ready by presentation

 An Actual Overlay

 Like the Recorder Controller, have the overlay sit on top of another app, so both apps are always in the foreground.

 Gestures

 Minimize all other windows with a shake! Restore the original state with another!

 ScreenRecorder Buffering And Streaming

 Record your last moments, the efficient way!

 Records the last X minutes of time in either a circular byte buffer or into a mapped byte buffer (mmap)

 Stream your recording over a file descriptor (Easiest way to do it)



Questions?

 FAQ

 Will I be releasing this on the App Store when it is finished?

 Yes, as soon as majority of the bugs are fixed, and the non-root features I 
plan to implement are implemented, It will be released

 Probably in about 3 – 4 months

 How much will it cost?

 Nothing, and it will be open source where people may contribute, but not 
distribute for money.

 Will there be ads?

 No, I hate ads, and there is no way they will fit in with my app.

 How will I make money?

 Donations. Hopefully.


