
Chapel Graph Library (CGL)
Louis Jenkins

LouisJenkinsCS@hotmail.com
University of Rochester

Rochester, NY

Marcin Zalewski
marcin.zalewski@pnnl.gov

Pacific Northwest National Laboratory
Northwest Institute for Advanced Computing

Seattle, WA

Abstract
In this talk, I summarize prior work on the Chapel Hyper-
Graph Library (CHGL), the Chapel Aggregation Library
(CAL), and introduce the more general Chapel Graph Li-
brary (CGL). CGL is being designed to enable global-view
programming, such that locality is abstracted from the user.
CGL is also being designed in away that is similar to Chapel’s
multiresolution design philosophy, where graphs are imple-
mented in terms of hyper graphs, and where both the un-
derlying hypergraph and overlying graphs are available for
use. Some of the kinds of graphs being designed are bipartite
graphs, directed and undirected graphs, and even trees.

CCS Concepts • Software and its engineering → Soft-
ware libraries and repositories; •Mathematics of com-
puting → Graph algorithms; Hypergraphs; • Computing
methodologies → Distributed programming languages.

Keywords distributed, parallel, graph library, Chapel

ACM Reference Format:
Louis Jenkins and Marcin Zalewski. 2019. Chapel Graph Library
(CGL). In Proceedings of the ACM SIGPLAN 6th Chapel Implementers
and Users Workshop (CHIUW ’19), June 22, 2019, Phoenix, AZ, USA.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3329722.
3330149

Introduction
Graphs are important models for computation in both scien-
tific computing and high-performance computing alike. Un-
fortunately there are many types of graphs, and implement-
ing all of them is extremely time-consuming. As well, a lot
of graphs tend share some overlap, wherein that overlap can
be abstracted away. One such abstraction is the hypergraph,
which is a generalization of graphs where edges are sets

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CHIUW ’19, June 22, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6800-1/19/06.
https://doi.org/10.1145/3329722.3330149

A

B C

D FE G

Figure 1. Binary Tree as a HyperGraph

rather than fixed pairs of vertices.1 Currently, the Chapel Hy-
perGraph Library (CHGL) [1] is the only distributed-memory
library for hypergraphs in Chapel. An example of CHGL ap-
plication to big data analytics on DNS data can be found
in Joslyn et al. [4]. While hypergraphs provide abstraction
of complex high-dimensional data, 2-uniform-hypergraphs
or just graphs are sufficient for many tasks. In the Chapel
Graph Library, we take a novel approach in that we intend
to implement all data structures on top of a lower-level hy-
pergraph, similar to how Chapel is implemented. Explicit
hypergraphs will still be available for use, but for many tasks
more specialized graphs view can be used instead. Thanks
to this design, the ability to convert a graph to a hypergraph
will be a constant-time operation. For example, it is possi-
ble to implement undirected graphs and binary trees with
hypergraphs; the result of the latter would look similar to
fig. 1
Utilizing the hypergraphs of CHGL allows us to reuse

all of the benefits of the existing implementation in CHGL.
One such benefit is enabling global-view programming via
privatization, where a locale-private instance of the class is
managed on each locale to vastly improve locality of access,

1Normal graphs are essentially hyper graphs where all hyper edges have a
cardinality of 2.

https://doi.org/10.1145/3329722.3330149
https://doi.org/10.1145/3329722.3330149
https://doi.org/10.1145/3329722.3330149


CHIUW ’19, June 22, 2019, Phoenix, AZ, USA Louis Jenkins and Marcin Zalewski

along with its compiler-optimization remote-value forward-
ing which forwards all accesses to the locale-private instance,
even when the default intent is by-reference such as in ’forall’
loops. This can enable efficient distributed-memory access
similar to that of Chapel’s distributed arrays. As CHGL uses
the Chapel Aggregation Library (CAL) [3], CGL can leverage
the benefits of aggregation to aide in cases of fine-grained
and irregular computations. Hence, CGL can more easily
provide distributed graphs that are not just easy-to-use, but
potentially fast depending on implementation. To enable
specialized graphs to leverage specific information, CHGL is
going to be revised incrementally to enable the implementa-
tion of such data structures and ensure their scalability.

Lastly, one exciting improvement for both CHGL and CGL
both, is the planned overhaul of concurrent techniques, such
as the new Interval-Based Memory Reclamation [5], and
RCUArray [2], which both should help to enable concurrent
modifications to the distributed hypergraph and graphs alike.

References
[1] Tanveer Hossain Bhuiyan, Sarah Harun, Christopher Lightsey, David

Mentgen, Sinan G. Aksoy, Timothy Stavenger, Marcin Zalewski, Hugh R.
Medal, and Cliff Joslyn. 2018. Chapel HyperGraph Library (CHGL). 2018
IEEE High Performance extreme Computing Conference (HPEC) (2018),
1–6.

[2] L. Jenkins. 2018. RCUArray: An RCU-Like Parallel-Safe Distributed
Resizable Array. In 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 925–933.

[3] L. Jenkins, M. Zalewski, and M. Ferguson. 2018. Chapel Aggregation
Library (CAL). In 2018 IEEE/ACM Parallel Applications Workshop, Alter-
natives To MPI (PAW-ATM). 34–43.

[4] Cliff A Joslyn, Sinan Aksoy, Dustin Arendt, Louis Jenkins, Brenda Prag-
gastis, Emilie Purvine, and Marcin Zalewski. [n.d.]. High Performance
Hypergraph Analytics of Domain Name System Relationships. HICSS
Symposium on Cybersecurity Big Data Analytics ([n. d.]), 8.

[5] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and
Michael L. Scott. 2018. Interval-Based Memory Reclamation. In Proceed-
ings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’18). ACM, New York, NY, USA, 1–13.


	Abstract
	References

