
Paving the way for Distributed Non-Blocking Algorithms and
Data Structures in the Partitioned Global Address Space model

Garvit Dewan, Indian Institute of Technology Roorkee, gdewan@cs.iitr.ac.in
Louis Jenkins, University of Rochester, louis.jenkins@rochester.edu

Abstract— The partitioned global address space memory
model has bridged the gap between shared and distributed
memory, and with this bridge comes the ability to adapt
shared memory concepts, such as non-blocking programming,
to distributed systems such as supercomputers. To enable non-
blocking algorithms, we present ways to perform scalable
atomic operations on objects in remote memory via remote
direct memory access and pointer compression. As a solution
to the problem of concurrent-safe reclamation of memory in
a distributed system, we adapt Epoch-Based Memory Recla-
mation to distributed memory and implement it such that it
supports global-view programming. This construct is designed
and implemented for the Chapel programming language but
can be adapted and generalized to work on other languages
and libraries.

I. INTRODUCTION

In synchronized data structures and algorithms, there
are many pitfalls that programmers can fall into, such as
deadlock, livelock, and priority inversion [1]. Non-blocking
data structures and algorithms provide many benefits over
their synchronized counterparts, such as providing guarantees
on liveness, which is a property on how threads make
progress throughout a system. One such liveness property
is obstruction-freedom [2], which states that threads are
guaranteed to complete their operation so long as they are
not obstructed by some other thread, such as by executing
in isolation; in lock-freedom [3], at least one thread is
guaranteed to progress and succeed in a bounded number
of steps; in wait-freedom [4], all threads are guaranteed to
progress and succeed in a bounded number of steps. These
properties are attainable in shared-memory, with decades of
research available on non-blocking data structures for shared-
memory. However, to the authors’ knowledge, there are not
many, if at all, for distributed memory.

The Partitioned Global Address Space (PGAS) memory
model offers an abstraction of distributed memory systems
in a way that allows them to have very similar semantics
to that of shared-memory. For example, PUTs and GETs,
which are remote-direct memory access (RDMA) operations
that remotely write and read values in memory without the
intervention of the CPU, are analogous to shared-memory
load and store operations, and can even be modeled as such
[5]. RDMA atomic operations, which are entirely handled by
the network interface controller (NIC) in high-performance

This work was supported by the US Department of Energy Computational
Science Graduate Fellowship (grant DE-SC0020347). Special thanks to
Cray, a Hewlett-Packard Enterprise Company, for providing access to the
compute resources utilized during development.

computing networks such as InfiniBand and Gemini/Aries,
allow for extremely low latency atomic operations that are
in the ballpark of mere microseconds. The exploration of the
application of non-blocking algorithms and data structures
to PGAS is enticing, but there are roadblocks and hurdles
that must be dealt with first. For example, the Chapel
programming language lacks native support for atomics on
arbitrary objects such as class instances, which is neces-
sary for any non-blocking algorithm. As well, the issue of
concurrent-safe memory-reclamation, that is, the reclamation
of memory when arbitrarily many threads could be accessing
said memory at any given time, is a real problem in shared-
memory where multiple solutions exist [6], [7], [8], [9].

This work provides EpochManager and
LocalEpochManager, which are based on Epoch-
Based Reclamation (EBR) [10]. Both serve as pseudo
garbage collection mechanisms that scale not only in
shared-memory but in distributed memory as well. Also
provided is AtomicObject, and the local-optimized
variant LocalAtomicObject. Both provide atomic
operations on class instances and provide optional ABA-
protection. The former is designed to support RDMA
atomics on class instances, making it possible for some
truly scalable algorithms and data structures.

II. DESIGN & IMPLEMENTATION

In the development of the EpochManager, there were
prerequisites that needed to be addressed, such as the need
for atomic operations on class instances. Only after overcom-
ing these hurdles is it possible to create the infrastructure
and building blocks necessary for creating non-blocking
algorithms in both shared and distributed memory.

A. Atomic Objects

In Chapel, atomic operations, which are operations that
appear to take place all at once from any other task’s point
of view, are defined only on bool, int, uint and real primitive
types. As of today, there is no official support for atomic op-
erations on class instances, which are represented as widened
pointers that contain not only the 64-bit virtual address but 64
bits of locality information, comprising a 128-bit structure.
Chapel has not implemented support for atomics on class
instances due to portability challenges, creating significant
obstacles to create even the most primitive of non-blocking
data structures, such as queues, stacks, and linked lists.
Furthermore, in Chapel, atomic operations over the network

rely upon Remote Direct Memory Access (RDMA), which
currently only supports atomic operations up to 64-bit.

In the initial prototype, which has been adapted into its
independent module, called the LocalAtomicObject,
the locality information is ignored, and it maintains
an atomic holding only the 64-bit virtual address. As
LocalAtomicObject will only work in a shared-memory
context, the GlobalAtomicObject offers pointer com-
pression, which is designed to take advantage of the fact
that currently, processors only use the lowest 48-bits for the
virtual address, enabling the encoding of 16-bits of locality
information in the 64-bit pointers. This approach will only
work in distributed setups with fewer than 216 compute
nodes, which consequently enables RDMA atomics on Cray
Aries.1 In the event that more than 216 compute nodes are
used, the implementation will fall back to using x86 CM-
PXCHG16B instruction2, also known as the ‘Double-word-
Compare-and-Swap’ (DCAS) operation, which can atomi-
cally update both the virtual address as well as the 64-bits
of locality information. Unfortunately, this demotes atomic
operations on remote memory from RDMA atomics, which
take around a microsecond to complete and do not require
the intervention of the CPU, to using active messages, which
are entirely handled by the progress thread of the recipient
compute node. As shared type is already wrapped in a
record and is larger than 64-bits, owned type is statically
managed and cannot be tracked without significant rework to
the type, and borrowed types are explicitly tracked by the
compiler making it difficult to track without some significant
rework, support is currently restricted to unmanaged class
instances. Support for owned and borrowed types is
planned as a future work.

Another problem that had to be overcome was the ABA
problem. The ABA problem occurs in scenarios where one
has at least two threads, and typically arises when performing
a compare-and-swap operation. In one such scenario, con-
sider an atomic linked list where one has multiple threads,
where a thread τ1 reads from the head of the list and
receives the node with virtual address α. Imagine that τ1
gets preempted, and some thread τ2 also reads the head
of the list, atomically moves the head of the list forward,
and deletes the node such that α is put back on some
free-list. Later, some other thread τ3 allocates a new node
which happens to have the same address α and atomically
inserts this at the head of the list. Now, τ1 wakes up
and incorrectly succeeds in its atomic exchange, despite
the fact that the head of the list has changed. There are
two known ways to solve the ABA problem, and they are
to either use a concurrent memory reclamation system, in
which is currently being built and leads to a chicken-and-
egg paradox, and using a DCAS, where a 64-bit counter is
held adjacent to the 64-bit word being atomically updated.
In the DCAS approach, the counter gets incremented after

1RDMA atomics are not yet possible on InfiniBand networks due to a
lack of current support in Chapel’s implementation.

2The equivalent load-linked/store-conditional instructions can be used on
ARM.

each ABA-dependent operation, which causes a DCAS to
fail even in the event of the ABA problem, since the 64-
bit counter will have changed. The AtomicObject and
LocalAtomicObject provide a 128-bit wrapper for 64-
bit types, called ABA where such a 64-bit counter is held
adjacent to the 64-bit virtual address, which in conjunction
with pointer compression can provide both ABA-free atomic
operations on remote objects, albeit using remote execution
rather than RDMA. Each operation has an ABA variant,
which includes the suffix ‘ABA’, that will take into account
the 64-bit counter, but the advanced user is free to use both
ABA and normal variants interchangeably. Due to Chapel’s
forwarding decorator, it is possible to use the ABA in
a seamless manner as if it were the type it is wrapping, as
all methods and field accesses will forward to the underlying
instance. Example usage of AtomicObject, implementing
a push operation of the Trieber Stack [11], can be seen in
Listing 1.

1 proc LockFreeStack.push(newObj : T) {
2 var node = new unmanaged Node(newObj);
3 do {
4 var oldHead = head.readABA();
5 node.next = oldHead.getObject();
6 } while(!head.compareAndSwapABA(oldHead, node));
7 }

Listing 1: Example usage of AtomicObject

B. Epoch Based Reclamation (EBR)

It was essential to make the EpochManager non-
blocking so to not weaken the non-blocking guarantees of
the data structures that employ it, or at least not too much.
The three non-blocking guarantees from weakest to strongest
are as follows: Obstruction-Freedom, which ensures that if a
thread runs in isolation, that is the thread does not have its
progress obstructed by any other thread, it will complete in a
bounded number of steps; Lock-Freedom, which ensures that
at least one thread must complete within a bounded number
of steps even when obstructed; Wait-Freedom, which ensures
that all threads must complete within a bounded number of
steps, regardless of obstruction. The EpochManager has
been made lock-free.

Epoch-Based Reclamation (EBR) is a concurrent-safe
memory reclamation system that utilizes epochs, which are
descriptors for a specific period of time, to determine the
quiescence of objects and determine when they are safe
to be reclaimed. Concurrent-safe memory reclamation is a
non-trivial problem and is at the very root of non-blocking
algorithms and data structures. The problem presented by
concurrent access is that it is not easy to know whether or
not a thread is accessing data we are interested in deleting,
and naively deallocating data can result in undefined behavior
from a use-after-free error. That is, once an object is freed,
it is normally placed on some type of free-list where it can
be used in some future allocation, which can cause data
corruption in the case of arbitrary writes or segmentation
faults in the case of dereferencing pointers. Epoch-Based

Time

Epoch 0

Epoch 2Locale 0 - Thread 0

Locale 0 - Thread 1

Locale 1 - Thread 0

Locale 1 - Thread 1

t2

Epoch 0

Epoch 1Epoch 0

Epoch 1

Epoch 2

Epoch 2

t4

Global Epoch Epoch 1Epoch 0

t1 t3 t5

Fig. 1. Illustration of Epoch-Based Reclamation, adapted to distributed memory. Given two locales with two threads each, the illustration begins in epoch
0. At time t1, the global epoch is 0 but Locale 0 – Thread 0 is still in epoch 2, preventing an advancement to epoch 1. At time t2, the global epoch is
safely advanced to epoch 1 after Locale 0 – Thread 0 becomes quiescent; even though Locale 1 – Thread 0 and Locale 0 – Thread 1 are in Epoch 0, it is
still safe to advance the epoch as epoch 0 is only one epoch behind. Locale 0 – Thread 1 remains in epoch 0 from t1 through t3, preventing the epoch
from advancing until t4, where the global epoch is then advanced to epoch 2. At t5 and onward, the algorithm continues much the same.

Reclamation combats this issue by utilizing epochs. EBR
tracks the epochs that participating threads are in, where each
participating thread must enter an epoch before accessing
data, and must leave the epoch afterwards. Generally, if a
thread is not in an epoch, it is considered quiescent in that
it no longer has access to the objects we are interested in
at that given moment. A thread inside of an epoch may or
may not be accessing the object at that given time, but out
of safety, the deallocation of said objects is deferred until
later.

To delete an object, it is first logically removed from the
data structure from which it is accessible. An example of
logical removal would be the removal of a node from a linked
list. The logically removed object is then put in a limbo list,
which is a list of objects to be reclaimed, associated with a
given epoch. More formally, an object o that is associated
with an epoch e must not be deleted until it is certain that no
thread is in epoch e. The only hazard in concurrent memory
reclamation occurs when another thread is accessing it while
it is being deleted, but the logical removal of o entirely
removes it from the data structure, and so only threads that
have had access prior to the removal can access o. Eventually,
once the epoch has been advanced to e+1, which occurs after
all threads are guaranteed to be either inactive or in at least
epoch e and not epoch e− 1, it is safe to delete the objects
in the limbo list for e − 1. Note that o is not reclaimed at
this point. Instead, the epoch must advance once more, after
which there is utmost certainty that o can safely be reclaimed
as all participating threads were quiescent after the logical
removal of o, and since o is no longer accessible from the
current epoch. An illustration of Epoch-Based Reclamation
can be seen in Figure 1.

C. Epoch Manager

The EpochManager is built on top of the notion of
epoch-based reclamation and limbo lists, in that objects that
are marked for deletion during an epoch are held in limbo
until they are safe to be deleted. To implement the limbo lists,
it was necessary to implement a non-blocking data structure
that was optimized not only for concurrent insertion, but
bulk removal, as all objects in the limbo list are deleted at
once, and not incrementally. The limbo list can be viewed
as having two phases— an insertion phase, which is entirely
concurrent, and a deletion phase, which both occur at disjoint
times. A somewhat novel but simple data structure has been
designed to significantly reduce overall latency to the point
that deferring an object for deletion has been made entirely
wait-free during the insertion phase and during the deletion
phase, and both are handled in one atomic exchange, shown
in Listing 2. Nodes are recycled using a lock-free stack [11]
and the ABA-protection provided by the AtomicObject.

1 proc push(obj : unmanaged object?) {
2 var node = recycleNode(obj);
3 var oldHead = _head.exchange(node);
4 node.next = oldHead;
5 }
6 proc pop() {
7 return _head.exchange(nil);
8 }

Listing 2: Wait-Free Limbo List.

The EpochManager is privatized, in that an instance
of the EpochManager is created and maintained on each
locale, and all accesses the EpochManager are forwarded,
such as the case for field accesses or method invocations, to
the instance that is local to that locale. That is, even though

...

...0:

1:

2:

Local Epoch = 2

Global Epoch = 2

...

...0:

1:

2:

Local Epoch = 2

Locale 0 Locale N

...

Fig. 2. Illustration of EpochManager when global and local epoch is 2. Each locale manages its own privatized instance, where all accesses are directed
to. Limbo list 0, shaded gray, is free to be reclaimed as there is a guarantee that no active task will be in epoch e− 2; limbo list 1 is not yet reclaimed,
and limbo list 2 becomes the current that all new reclaimed objects will be added to. Local Epoch acts as a locale-private cache for the current epoch,
reducing necessary communication. An atomic flag must also be acquired to advance the epoch, first locally and then globally, where in failing to do so
will cause the attempting thread to back out (non-blocking).

the EpochManager can be used in distributed contexts,
such as in distributed parallel forall loops, or inside of
remote-procedure call (RPC) on statements, all accesses are
guaranteed to respect locality. This is achieved by remote-
value forwarding and record-wrapping, where a record which
holds data required to lookup the instance itself is based
by-value, and not by-reference as is the default in Chapel
when it comes to forall statements. This allows for zero-
communication when acquiring the privatized instance. This
results in a massive speedup, since replication across locales
cuts down all unnecessary communication and allows the
caching of data or even keeping locale-specific instances
of data, and the record-wrapping eliminates an additional
round-trip communication required to obtain the metadata
needed to find the privatized instance. In practice, this has
been observed by the authors to allow distributed objects
to no longer be communication bound, that is bound the
available bandwidth and latency of the network, and allows
for some truly scalable algorithms. This technology is not
new, either, as it has been used in previous works to create
distributed data structures [12], [13], [14], [15], and is used as
the backbone for Chapel’s arrays, domains, and distributions.
An illustration is provided in Figure 2.

An array of three limbo lists are maintained on each locale
in the privatized instance, representing the possible epochs
that any given thread can be in, which are e−1, e, and e+1.
Each locale caches its epoch, which is used when deciding
which limbo list to defer deletion of objects to. When it
is time to update the global epoch, a task gets elected. In

this case, the election is handled in a first-come-first-serve
nature via a local atomic flag is setting epoch for their
locale, and then for the locales that the EpochManager
is distributed over. This has the effect of stemming off
unnecessary amounts of communication that would arise if
multiple tasks across multiple locales attempted to update
the global epoch at the same time, as only one of them can
succeed in doing so. As each locale has its own individual
instance, a class instance wraps the global epoch itself so
that there is a single centralized and coherent epoch that all
locales can come to a consensus on.

The EpochManager creates a set of tokens, which are
class instances that keep track of the epoch that a task is
currently engaged in. Before a task is free to access a data
structure that is protected by the epoch-based reclamation
provided by the EpochManager, it must first register and
obtain one of these tokens. When they are finished, they
must unregister and relinquish them. Two separate lists are
maintained for tokens— one which keeps track of free
tokens, used when registering and unregistering, and one
which is a list of all allocated tokens, which is used to scan
the minimum epoch. Once registered, the token is not yet
in an epoch, and in fact can be used to perform multiple
operations in the same task as an optimization. A token
must be pinned and unpinned just like it must be registered
and unregistered, where pinning enters the current epoch,
and unpinning exits the current epoch. When an object
is to be deleted, it is always added to the current epoch
associated with the token. The token is itself wrapped in a

managed class so that when it goes out of scope, the token
can automatically be unregistered. This is particularly useful
while using task-private variable intents on forall loops,
as shown below.

1 var em = new EpochManager();
2 // Serial and Shared Memory
3 var tok = em.register();
4 tok.pin();
5 tok.unpin();
6 tok.unregister();
7

8 // Parallel and Distributed (forall)...
9 forall x in X with (var tok = em.register()) {

10 tok.pin();
11 tok.deferDelete(x);
12 tok.unpin();
13 } // automatic unregister
14 em.clear(); // Reclaim everything at once.

Listing 3: Example usage of EpochManager.

The EpochManager will not advance the epoch on its
own, and requires user intervention to do so. The user is free
to tryReclaim, which attempts to advance the epoch if
and only if no token on any other locale is in a previous
epoch. As well, since the objects to be deleted can be
remote, and since remote deallocation would result in RPC,
a scatter list is constructed that sorts objects by the locales
they are allocated on, significantly cutting down unnecessary
communication. The tryReclaim method is intended to
be invoked on the token or EpochManager. It is a global
operation, optimized such that if another task is attempting
to update the epoch on the current locale, other tasks will
swiftly return, without much wasted effort; if another task
is attempting to update the global epoch, it will also return
after clearing the local flag. The clear method is intended
to be invoked directly on the EpochManager and performs
the same action as tryReclaim with the exception that it
will always reclaim all objects across all epochs, and should
be called when there is a guarantee that no other thread is
interacting with the EpochManager.

The LocalEpochManager is a shared-memory op-
timized variant that functions in a similar way to the
EpochManager, but differs in that it lacks global epoch
and does not take remote objects into consideration when
being used, speeding up computations that do not require
epoch-based reclamation support across multiple locales.

III. PERFORMANCE EVALUATION

All experiments were conducted on a 64-node Cray
XC-50 with 44 core Broadwell CPUs per node, com-
piled using Chapel 1.20 with the ‘fast’ flag to enable
all compiler and backend optimizations. The experiments
were conducted both in the presence and absence of
CHPL NETWORK ATOMICS, which is RDMA atomic op-
erations. These RDMA atomics are not coherent, and so
all atomic operations, including those that are performed
locally on the same system, must go through the Gemini
or Aries NIC. This overhead of using network atomics for
local operation has been measured to be as much as an

1 proc tryReclaim() {
2 if (is_setting_epoch.testAndSet()) then return;
3 if (global_epoch.is_setting_epoch.testAndSet()) {
4 is_setting_epoch.clear();
5 return;
6 }
7

8 // Is it safe to reclaim across all locales?
9 const this_epoch = global_epoch.read();

10 var safeToReclaim = true;
11 coforall loc in Locales with (&& reduce safeToReclaim)
12 do on loc {
13 var _this = getPrivatizedInstance();
14 for tok in _this.allocated_list {
15 var local_epoch = tok.local_epoch.read();
16 if (local_epoch != 0 && local_epoch != this_epoch) {
17 safeToReclaim = false;
18 break;
19 }
20 }
21 }
22

23 if safeToReclaim {
24 const new_epoch = (current_global_epoch % 3) + 1;
25 global_epoch.write(new_epoch);
26 coforall loc in Locales do on loc {
27 // Update each locale's epoch
28 var _this = getPrivatizedInstance();
29 _this.locale_epoch.write(new_epoch);
30

31 const reclaim_epoch = _this.getReclaimEpoch();
32 var reclaim_limbo_list =
33 _this.limbo_list[reclaim_epoch];
34 var head = reclaim_limbo_list.pop();
35

36 while (head != nil) {
37 var obj = head.val;
38 var next = head.next;
39 // Scatter objects to their locale
40 _this.objsToDelete[obj.locale.id].append(obj);
41 delete head;
42 head = next;
43 }
44 coforall loc in Locales do on loc {
45 // Bulk transfer and delete
46 var ourObjs =
47 _this.objsToDelete[here.id].getArray();
48 delete ourObjs;
49 }
50

51 // Clear scatter list
52 forall i in LocaleSpace do
53 _this.objsToDelete[i].clear();
54 }
55 }
56 global_epoch.is_setting_epoch.clear();
57 is_setting_epoch.clear();
58 }

Listing 4: Implementation of tryReclaim.

order of magnitude by the authors. While in the development
of both the EpochManager and AtomicObject, care
has been taken to eliminate the usage of RDMA atomics
when they are unnecessary by ‘opting out’, it is still useful
to compare performance with and without the support for
RDMA atomics. Since RDMA atomics are only available
on Gemini and Aries, the performance observed with RDMA
atomics disabled would be relatively close to the performance
seen when using InfiniBand, as Chapel does not utilize
InfiniBand RDMA atomics even when present on the system.

The performance of both AtomicObject and
EpochManager is measured to show the raw overhead
of both constructs with the goal of proving them both
scalable. Such microbenchmarks are important in that
it is exceedingly difficult to build scalable non-blocking
algorithms without scalable building blocks, beginning

 0.01

 0.1

 1

 10

 1 2 4 8

 1
6

 3
2

T
im

e
(s

ec
o
n
d
s)

Tasks

Shared Memory

atomic int
AtomicObject (ABA)

AtomicObject

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

Distributed Memory

atomic int (none)
atomic int (ugni)

AtomicObject (ABA)
AtomicObject (none)
AtomicObject (ugni)

Fig. 3. AtomicObject vs atomic int

Pin-Unpin w/ Sparse tryReclaim

 0.01

 0.1

 1

 10

 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

0% Remote Objects

none
ugni

 0.1

 1

 10

 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

50% Remote Objects

none
ugni

 0.1

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

100% Remote Objects

none
ugni

Fig. 4. Deletion with tryReclaim called once per 1024 iterations.

with AtomicObject, which is a fundamental building block,
including for EpochManager. The AtomicObject
is compared to one of the only types that atomics
are natively supported in Chapel, the atomic int.
The atomic int is also a sibling of the atomic
uint, which the AtomicObject is built on top of.
Microbenchmarks involving the AtomicObject test the
overhead injected by the abstraction. Microbenchmarks
involving the EpochManager focus on different use-cases
and workloads.

In this section, we explore two performance criteria. First,
we evaluate the performance of Atomic Objects against
Chapel’s atomic variables. We use Chapel’s atomic int.
The experiments focus on the common set of operations

Pin-Unpin w/ Dense tryReclaim

 0.1

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

0% Remote Objects

none
ugni

 0.1

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

50% Remote Objects

none
ugni

 0.1

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

100% Remote Objects

none
ugni

Fig. 5. Deletion with tryReclaim called every iteration.

Pin-Unpin w/ Deletion + Cleanup

 0.01

 0.1

 1

 10

 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

0% Remote Objects

none
ugni

 0.1

 1

 10

 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

50% Remote Objects

none
ugni

 0.1

 1

 10

 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

100% Remote Objects

none
ugni

Fig. 6. Deletion with reclamation only performed at end.

 0.01

 0.1

 1 2 4 8

 1
6

 3
2

 6
4

T
im

e
(s

ec
o
n
d
s)

Locales

Pin-Unpin

none
ugni

Fig. 7. Read-only workload without deletion.

available between Chapel’s atomic variables and Atomic
Objects: read, write, compare and swap, and exchange.
Second, we evaluate the scalability of EpochManager,
testing raw acquire/release, memory reclamation with remote
objects, and manual garbage collection every fixed number
of iterations.

A. Atomic Objects Performance Evaluation

We compare Atomic Objects performance with and with-
out ABA protection against Chapel’s atomic int in
shared memory and distributed memory, as shown in Fig-
ure 3. The experiment evaluates strong scaling, with each
task performing the same number of operations, comprising
25% read, 25% write, 25% compare-and-swap, and 25%
exchange operations. Shared memory experiments show that
all three of atomic int, AtomicObject (ABA) and Atomi-
cObject scale linearly with an increasing numbers of tasks.
AtomicObject without ABA protection performs equivalently
to Chapel’s atomic int, and AtomicObject (ABA) takes the
highest amount of time, with a constant overhead. In dis-
tributed memory, the performance of AtomicObject without
ABA protection is equivalent to Chapel’s atomic int. This
shows that even in distributed memory, there is no noticeable
overhead, and it scales linearly with the number of locales,
whether RDMA atomics are used or not. AtomicObject
(ABA) scales linearly with an increasing numbers of locales.
It performs equivalently to Chapel’s atomic int without
network atomics.

B. Epoch Manager Performance Evaluation

1 // Create manager instance
2 var manager = new EpochManager();
3 var objsDom = {0..#numObjects} dmapped Cyclic(startIdx=0);
4 var objs : [objsDom] unmanaged C();
5 // Randomize locale that each object is allocated on
6 randomizeObjs(objs);
7 forall obj in objs with (
8 var tok = manager.register(),
9 var M : int

10) {
11 tok.pin();
12 // If we are deleting...
13 tok.deferDelete(obj);
14 tok.unpin();
15 M += 1;
16 // If we are tryReclaim'ing...
17 if M % perIteration == 0 {
18 tok.tryReclaim();
19 }
20 }
21 // Reclaim all objects at end
22 manager.clear();

Listing 5: Microbenchmark of EpochManager.

The microbenchmarks for EpochManager are similar to
Listing 5.

We evaluate the scalability of EpochManager under
various workloads, which should be representative of the
different use-cases. In a read-only workload, such as for
a read-often write-rarely data structure, such as when per-
forming a lookup in a hash table or a linked list, it may be
suitable to just pin at the beginning of the operation, and then
unpin at the end. Demonstrated in Figure 7, performance

is essentially stable across multiple locales, demonstrating
that even in distributed contexts it can scale reasonably
well as all locales forward their accesses to their privatized
instances despite being in a parallel and distributed forall
loop. In Figure 6, another typical workload is analyzed
where no reclamation is performed until the very end, which
is typical when the number of objects is bound and can
fit within memory without running out of memory. The
number of remote objects to be reclaimed varies by 0%,
50%, and 100%, which measures the overhead of reclaiming
remote objects. The EpochManager scales even in the case
where tryReclaim is invoked with increasing frequency,
as demonstrated by the results displayed in Figure 4. When
reclamation is performed, not even the locale where the
global epoch is allocated is bogged down by redundant
requests thanks to the first-come-first-serve election of tasks,
and scales equally both with and without RDMA atomics. In
the case where the user does not want to take any chances
and attempts to tryReclaim on every iteration, there is
still scalability, as shown in Figure 5.

IV. CONCLUSION

The AtomicObject is a solution to the problem of a
lack of language support atomic operations on objects. The
implementation not only provides the operations in shared-
memory but distributed memory, utilizing pointer compres-
sion that enables RDMA atomic operations, which are on-
par with the performance for atomic operations on integers,
while also providing protection from the ABA problem with
memory reclamation via usage of double-word compare-
and-swap. The EpochManager is a non-blocking epoch-
based reclamation garbage collection system that allows
for concurrent-safe reclamation even in distributed-memory
contexts. Both of these are essential building blocks for
developing non-blocking algorithms in both shared-memory
and distributed-memory. In future works, it is planned to
allow more than 216 locales while still allowing RDMA
atomic operations, by introducing another level of indirection
and utilizing an descriptor index into a separate table of
objects in place of the pointer itself. As well, there is planned
exploration of allowing atomics on owned and borrow types.
Also in future works, an application of both the constructs in
the porting of the Interlocked Hash Table [16] is complete
and awaiting release; their applications in the creation of
other distributed algorithms are also planned.

REFERENCES

[1] M.-C. M and S. L, “Algorithms for scalable synchronization on shared-
memory multiprocessors,” ACM Transactions on Computer Systems
(TOCS), Feb. 1991.

[2] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchro-
nization: double-ended queues as an example,” in 23rd International
Conference on Distributed Computing Systems, 2003. Proceedings.,
(Providence, Rhode Island, USA), pp. 522–529, IEEE, 2003.

[3] H. Massalin and C. Pu, “A lock-free multiprocessor os kernel,” ACM
SIGOPS Operating Systems Review, vol. 26, no. 2, p. 108, 1992.

[4] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang.
Syst., vol. 13, p. 124149, Jan. 1991.

[5] A. Hayashi, J. Zhao, M. Ferguson, and V. Sarkar, “LLVM-based
communication optimizations for PGAS programs,” in Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure in HPC -
LLVM ’15, (Austin, Texas), pp. 1–11, ACM Press, 2015.

[6] D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele, “Lock-free
reference counting,” in Proceedings of the Twentieth Annual ACM
Symposium on Principles of Distributed Computing, PODC 01, (New
York, NY, USA), p. 190199, Association for Computing Machinery,
2001.

[7] M. M. Michael, “Hazard Pointers: Safe Memory Reclamation for
Lock-Free Objects,” IEEE Transactions on Parallel and Distributed
Systems, vol. 15, pp. 491–504, June 2004.

[8] H. Wen, J. Izraelevitz, W. Cai, H. A. Beadle, and M. L. Scott,
“Interval-based Memory Reclamation,” in Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’18, (New York, NY, USA), pp. 1–13, ACM,
2018. event-place: Vienna, Austria.

[9] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole, “Perfor-
mance of memory reclamation for lockless synchronization,” Journal
of Parallel and Distributed Computing, vol. 67, pp. 1270–1285, Dec.
2007.

[10] K. Fraser, “Practical lock-freedom,” tech. rep., University of Cam-
bridge, Computer Laboratory, 2004.

[11] D. Hendler, N. Shavit, and L. Yerushalmi, “A scalable lock-free stack
algorithm,” in Proceedings of the Sixteenth Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’04, (Barcelona,
Spain), pp. 206–215, Association for Computing Machinery, June
2004.

[12] L. Jenkins, M. Zalewski, and M. Ferguson, “Chapel Aggregation
Library (CAL),” in 2018 IEEE/ACM Parallel Applications Workshop,
Alternatives To MPI (PAW-ATM), pp. 34–43, Nov. 2018.

[13] L. Jenkins and M. Zalewski, “Chapel Graph Library (CGL),” in
Proceedings of the ACM SIGPLAN 6th on Chapel Implementers and
Users Workshop, CHIUW 2019, (New York, NY, USA), pp. 29–30,
ACM, 2019. event-place: Phoenix, AZ, USA.

[14] L. Jenkins, T. Bhuiyan, S. Harun, C. Lightsey, D. Mentgen, S. Aksoy,
T. Stavcnger, M. Zalewski, H. Medal, and C. Joslyn, “Chapel Hy-
perGraph Library (CHGL),” in 2018 IEEE High Performance extreme
Computing Conference (HPEC), (Waltham, MA), pp. 1–6, IEEE, Sept.
2018.

[15] L. Jenkins, “RCUArray: An RCU-Like Parallel-Safe Distributed Re-
sizable Array,” in 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 925–933, May
2018.

[16] L. Jenkins, T. Zhou, and M. Spear, “Redesigning gos built-in map to
support concurrent operations,” in 2017 26th International Conference
on Parallel Architectures and Compilation Techniques (PACT), pp. 14–
26, IEEE, 2017.

