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Abstract—The Go language lacks built-in data structures
that allow fine-grained concurrent access. In particular, its map
data type, one of only two generic collections in Go, limits
concurrency to the case where all operations are read-only;
any mutation (insert, update, or remove) requires exclusive
access to the entire map. The tight integration of this map into
the Go language and runtime precludes its replacement with
known scalable map implementations.

This paper introduces the Interlocked Hash Table (IHT). The
IHT is the result of language-driven data structure design: it
requires minimal changes to the Go map API, supports the
full range of operations available on the sequential Go map,
and provides a path for the language to evolve to become more
amenable to scalable computation over shared data structures.
The IHT employs a novel optimistic locking protocol to avoid
the risk of deadlock, and allows large critical sections that
access a single IHT element, and can easily support multi-
key atomic operations. These features come at the cost of
relaxed, though still straightforward, iteration semantics. In
experimentation in both Java and Go, the IHT performs well,
reaching up to 7× the performance of the state of the art in Go
at 24 threads. In Java, the IHT performs on par with the best
Java maps in the research literature, while providing iteration
and other features absent from other maps.

I. INTRODUCTION

Safe, scalable, general-purpose concurrency support is an

essential feature of modern programming languages [1].

This support typically includes a precisely-defined language-

level memory model [2], [3], first-class support for threads

and locks [4], and a standard library of highly concurrent

data structures that facilitate the coordination of threads via

shared memory [5], [6]. It may also include support for spe-

cific patterns, such as Communicating Sequential Processes

(CSP) [7], Actors [8], and Transactional Memory [9].

As a modern programming language, Go offers many

features that support concurrent programming. Its thread

abstraction is a multi-CPU variant of Capriccio [10] that can

multiplex hundreds of thousands of lightweight goroutines

onto all the physical cores of a machine. Its channel abstrac-

tion provides first-class support for CSP, and scales to thou-

sands of threads. Go also allows shared-memory synchro-

nization, through the sync package’s Mutex, RWMutex,

and atomic versions of primitive data types.

Unfortunately, Go does not provide scalable concurrent

data structures. In many languages, such a deficiency could

be remedied through updates to a library, (for example, the

java.util.concurrent package is continually evolv-

ing [5]). However, Go does not allow user-defined generic

collections. Go provides two built-in, generic, sequential

collections, the map and slice (dynamic array). Both are

tightly integrated into the Go compiler and runtime. To

create a scalable collection in a library, a programmer would

need to use Go’s opaque interface{} type, which incurs

an extra level of indirection, and would not be able to employ

features that are exclusively available to Go’s sequential

map and slice. For example, the Go compiler generates a

suitable hash function for a map based on its key type (e.g.,

for multi-field struct keys, it will hash each field of the

key), but this mechanism is not available to library code.

Nonetheless, Go is an appealing language for concur-

rent data structure design. It is garbage collected, which

makes it easier for concurrent data structures to employ

speculation: the memory accessed by a thread executing a

doomed but incomplete speculation cannot be recycled while

any thread retains a reference to it. Go is type-safe, and

provides reflection and auto-boxing. Like C++, Go allows

fine-grained control of the placement of hardware memory

fences, and can avoid indirection by storing data, rather than

references, in its built-in collections. Go also allows direct

pointer access, through its unsafe package.

Because, Go’s map and slice are tightly coupled with

the compiler and run-time system, it is not straightforward to

use existing concurrent data structures efficiently. In the case

of the map, the compiler selects a data layout based on the

size of the key and value types, and the run-time interface

to the map returns a pointer to a map element, rather

than performing an insert or lookup directly. Go’s range

keyword, used for iteration, must produce a randomized

starting position. These properties prevent the use of state-

of-the-art map implementations (e.g., those from JSR-166):

nonblocking Java maps cannot support pointer-based access

to map elements, and even the blocking Java maps do not

allow iteration to begin from a random starting point.

Our solution is to create a new concurrent map data

structure specifically for Go. Our Interlocked Hash Table

(IHT) leverages Go’s garbage collection, unsafe pointer

access, and unconventional iterator semantics, to deliver low

latency and high scalability. The IHT is implemented in the

Go compiler and runtime, supports concurrent insert, lookup,

remove, update, and iteration, and also provides a facility



through which programmers can write large critical sections

over a single map element, or even multiple elements. In

return for these features, the IHT offers weaker iteration

guarantees than a sequential map: iteration will never return

an item twice, or miss an item that was present for the

duration of iteration, but it is not linearizable [11].

II. BACKGROUND AND RELATED WORK

We briefly discuss the features that most significantly

affect high-performance concurrent data structure design,

and also discuss the implementation of Go’s sequential map.

A. Concurrent Data Structure Design

In order to scale, concurrent data structures must avoid

interaction among threads. For lock-based algorithms, using

fine-grained locks prevents threads from attaining mutual

exclusion over too large of a region of memory, but introduce

extra latency for each lock acquire/release. For nonblocking

algorithms [12], the state of any thread cannot impede the

forward progress of other threads. Particularly appealing are

lock-free data structures, which do not allow deadlock or

livelock but may admit starvation under pathological inter-

leavings. These are often the most scalable and performant

concurrent data structures [13].

Not all data structures can be made lock-free and fast.

When an operation must atomically modify multiple loca-

tions to achieve its desired change to a data structure, the use

of a single atomic hardware instruction, such as compare-

and-swap (CAS), may not be sufficient, necessitating the use

of a software simulation of multi-word atomic operations

(e.g., LLX/SCX [14] or multi-word CAS [15], [16]). The la-

tency of multiple CAS instructions within these simulations,

and the complex helping protocols needed to ensure forward

progress, can reduce throughput and increase latency. Even

when only one CAS instruction per operation is required,

many lock-free data structures require atomic copying. For

example, updating an element in a nonblocking set typically

entails copying the element out of the set, modifying the

copy, and then writing the new version back into the data

structure. When the collection stores types larger than the

machine word size, atomic copying becomes expensive.

Techniques like optimistic synchronization are often more

important than nonblocking guarantees. Consider the lazy

list [17]: it provides nonblocking lookup operations, but

uses locks when inserting and removing elements. It avoids

lock acquisitions during traversal; validates the presence

of a node in the list after locking it, leaving marked-but-

invalid entries in the list for other threads to clean up at a

later time; and leverages garbage collection to ensure that

data being accessed by concurrent “doomed” speculations is

not reclaimed and re-allocated until after those speculations

restart. The three most popular nonblocking maps also

employ some of these techniques: the Split-Ordered List [18]

and fixed-size nonblocking hashtable [19] use a nonblocking

mapaccess(k) Returns an internal pointer to the v corresponding

to k, if found.

mapassign(k, v) Inserts k and v into the map, or updates them if k

is already present.

mapdelete(k) Removes k and its v from the map.

mapiterinit(map, it) Initializes an iterator that iterates over k/v pairs in

a randomized order.

mapiternext(it) Yields a k/v pair from the map.

Table I: Compiler API for map accesses. k and v refer to a

key and its value, respectively.

precursor to the lazy list as their fundamental data structure,

and the lock-free resizable hashtable [20] lazily rehashes

elements upon overflow of a bucket.

Concurrent data structures are usually designed to ensure

linearizability [11]. Linearizability guarantees that every

operation appears to happen at a single instant in time,

somewhere between when the operation was invoked, and

when it provided a response to its caller. In nonblocking

data structures, the point at which an operation linearizes

is usually some CAS operation it issues. In lock-based data

structures, the linearization point is usually some instruction

within a lock-based critical section [21].

Linearizable iteration is particularly challenging. The

most straightforward approach, atomic snapshots, are com-

plex and may not scale [22]. Worse, programmers wishing

to perform modifications during iteration are poorly served

by snapshots, which can return a stale copy of a large data

structure. Many concurrent data structures relax their iterator

semantics. In JSR-166, iteration over a priority queue may

not return elements in priority order, and iteration over a

queue may “miss” elements added to the queue. Still, these

data structures guarantee that every element returned by

the iterator was present in the data structure at the time

when the iterator returned it. Several lock-based concurrent

skiplists offer non-linearizable read-only iteration [23], [13],

[21]. Others allow multi-location atomic operations, but only

when the locations are known in advance [24].

B. The Go Map: Implementation and Interface

A simplified description of the interface to the Go map

appears in Table I. The compiler translates map accesses

into calls to five core functions. When a map is in-

dexed as an rvalue (e.g.,value := map[key]), a call

to mapaccess is generated. When a map is indexed

as an lvalue (e.g., map[key] := value), a call to

mapassign is generated. Calls to delete an element in

the map (e.g., delete(map, key)) are replaced with

a call to mapdelete. Finally, both mapiterinit and

mapiternext are generated during a for...range

iteration over a map.

The Go map API fundamentally differs from the interfaces

common in nonblocking data structures. It allows keys with

sizes greater than a machine word, and hence techniques that

rely on atomic reads of keys, such as the lazy list’s wait-free



Listing 1: IHT types. The ParentStruct type encap-

sulates information about the bucket within the parent

PointerList that references any BaseObject.

Fields of BaseObject:
l : CMLock // spinlock + type identifier

parent : ParentStruct // parent bucket

Fields of PointerList (extends BaseObject):
size : Integer // size of buckets array

hashkey : Integer // seed for hash function

buckets : BaseObject[] // ElementLists or PointerLists

Fields of ElementList (extends BaseObject):
count : Integer // number of active elements

keys : KeyType[] // the keys stored in this ElementList

values : ValType[] // the values stored in this ElementList

contains operation, are not available. For lookup opera-

tions, mapaccess explicitly returns an internal pointer to

a value inside of the map. This behavior, which resembles

barriers in garbage collectors [25], is not compatible with

nonblocking techniques, because the linearization point of

the read occurs after the response of the lookup function.

In a naı̈ve concurrent implementation of this interface, the

internal pointer returned by mapaccess could be concur-

rently mutated, causing a race.

At the same time, the map interface and specification

provide unique opportunities. Iteration is a fundamental

feature of Go maps, and is required in order for certain

runtime operations to interact with the map; this restricts the

use of research concurrent data structures that do not provide

iteration. However, the Go map is specified such that pro-

grammers cannot expect a map iteration to produce values in

any particular order. For our purposes, this enables the use of

randomization to prevent convoying when multiple threads

iterate simultaneously. Additionally, the Go map is resizable

(the implementation will grow, but never shrink, a map), and

this is achieved via indirection. Thus concurrent maps need

not incur overhead simply for introducing indirection: it is

already inherent in the baseline.

III. DESIGN OF A CONCURRENT, LOCK-BASED MAP

We now present pseudocode and describe the behav-

ior of the IHT. Listing 1 introduces the two main data

types used by the IHT: ElementLists are used to hold

key/value pairs, and PointerLists form a wide tree

by holding references to either ElementLists or other

PointerLists in their buckets arrays.

The IHT is defined by its root PointerList and

three constants: DEPTH , the maximum depth of the

tree; EMAX , the maximum number of elements in any

ElementList; and PINIT , the size of the buckets

array of the root PointerList. Child PointerLists’

buckets arrays hold twice as many elements as their par-

ents’ buckets arrays, except at depth DEPTH , where the

PointerList can be doubled as many times as needed.

Each PointerList’s hash function uses a different seed,

to avoid collisions when elements are rehashed.

The IHT can grow, but not shrink. Thus once a bucket

references a PointerList, it will never again be nil

or reference an ElementList. In addition, excluding

the deepest level of the tree, once a bucket references a

PointerList, it is immutable. At the deepest level, a

bucket may reference a larger PointerList in the future.

In Java, the CMLock is simply a spinlock, and run-

time type information is used to distinguish between

ElementList, PointerList, and depth-DEPTH

PointerList references. In Go, ElementLists and

PointerLists are organized so that their first word

is a CMLock field. A CMLock couples mutual exclusion

information with knowledge about the type of the object

in which the lock is embedded. The CMLock is used as a

spin lock, and releasing the lock can always be achieved by

subtracting 1. The possible states appear below:

• eavail – An unlocked ElementList.

• elock – A locked ElementList.

• pinner – A PointerList at depth < DEPTH . Such

PointerLists are always unlocked.

• pterm – An unlocked PointerList at DEPTH .

• plock – A locked PointerList at DEPTH .

• GARBAGE – A locked list undergoing rehashing.

This enables us to use opaque types in a PointerList in

Go: the lock state suffices to indicate the object type.

A. IHT Behavior

Figure 1 shows seven concurrent operations, which illus-

trate the key behaviors of the IHT. Each of these operations

is represented by a number in a black circle, and is de-

scribed below. In the figure, vertical stacks of rectangles

indicate PointerLists, and horizontal stacks indicate

ElementLists. White locks are unheld, gray locks are

held, and black locks are GARBAGE. Gray boxes repre-

sent occupied positions in an ElementList, and striped

boxes indicate the location where an action (lookup, insert,

remove) takes place. Curved lines represent atomic stores;

dashed lines represent CAS operations.

Operation 1 could be an insert, lookup, or remove.

It hashes its key, using the hash function of the root

PointerList, and finds an ElementList. If it can

lock that ElementList, it can search through the list and

decide whether the first element matches the provided key. If

it matches, a lookup will return the value, whereas an insert

will update it. A remove will remove the key/value pair from

the ElementList. If the key does not match, a lookup or

remove will return an appropriate failure result, but an insert

will add a new key/value pair to the ElementList.

Operation 2 encounters an inner PointerList, but its

key hashes to a nil ElementList. If it is an insert, it

constructs a new ElementList, inserts its element into the

list (as a striped block), and then inserts its ElementList

via a CAS.
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Figure 1: Concurrent hash shape and behavior. PINIT and EMAX are set to 4. DEPTH is set to 2. To avoid clutter in the

figure, PointerLists at levels 1 and 2 are shown with size PINIT . In Section V, these PointerLists will have a

size of 2n×PINIT

Operation 3 is identical to Operation 1, except the op-

eration is on an ElementList at the maximum depth;

It locks this ElementList. In contrast, when Operation

4 reaches a PointerList at the same level, it acquires

the PointerList’s lock, traverses once more, locates its

desired ElementList, but does not acquire another lock,

since it already acquired the lock of its parent. Note that it

does not also lock an ElementList: ElementLists at

DEPTH + 1 are never locked.

Operation 5 is blocked attempting to acquire the lock

on the PointerList owned by Operation 4. This is a

necessary consequence of the fixed depth of the map: even if

the operation would hash to a different bucket than Operation

4, it cannot run concurrently with Operation 4.

Operation 6 is a common-case resize: an insertion encoun-

ters a full ElementList that is not at DEPTH . It marks

the ElementList as GARBAGE, which does not release

the lock, creates a new PointerList, and rehashes both

the ElementList’s elements, and the key/value pair it

is adding, into it. Finally, it installs the PointerList

by atomically overwriting the reference to the now-defunct

ElementList. Note that if Operation 3 encountered a full

ElementList, it would operate in the same manner.

Operation 7 is a resize at maximum depth. The figure

does not show the completed state, only the point where the

ElementList is found to be full. Next, the thread would

create a new locked PointerList with greater capacity,

rehash all elements from all child ElementLists of the

old PointerList into the new PointerList, perform

its operation on the new PointerList, and then install

the new PointerList, using an atomic store.

B. Algorithm Correctness and Key Properties

Having sketched the key behaviors of the concurrent map,

we now present pseudocode and discuss the key invariants to

ensure the correctness of the synchronization mechanisms.

To simplify the discussion, we encapsulate the traversal

and expansion behaviors of the map in a single function,

GetEList (Algorithm 1). Specific insert, lookup, and

remove operations for a Java-like API appear in Algorithm 2.

Algorithm 2 has the following simplifications: it does

not backoff when encountering a held lock, and some-

times inserts an ElementList or rehashes into a new

PointerList during a lookup or remove for a key not

present in the map. While these inefficiencies are not present

in our implementation, they simplify the discussion below.

We also use the shorthand of EToP and PToBiggerP

to represent the sequential operations of hashing an

ElementList’s elements into a new PointerList,

and rehashing a PointerList’s elements into a larger

PointerList, respectively.

An operation never requires more than one lock, and

hence deadlock is not possible. The ability to avoid mul-

tiple lock acquisitions is a direct consequence of the state

transition mentioned above: if a bucket points to an inner

PointerList, then the bucket is immutable, and the

enclosing object need not be locked in order to read that

bucket’s value. This sort of inductive, speculative object

access is inspired by RCU [26], sequence locks [27], and

Software Transactional Memory [28].

Another key feature of the algorithm is that (exclud-

ing max-depth PointerLists), the lock protecting an

ElementList is embedded in the list itself, not in its

parent. This improves locality, since common-case insert

and remove operations only perform writes to a single

object. Furthermore, since locks protecting references are

in the payload ElementLists, instead of the parent

PointerLists, we do not require padding of the pointers

in the PointerList: they are read-shared in the cache.



Algorithm 1: Concurrent map expanding traversal

// Given a map and key, this function returns a tuple consisting of a reference

// to a lock and a reference to an ElementList. The ElementList represents

// the sole place in the map where that key might exist.

function GetEList (map, key)
1 curr ← map // Start at the root PointerList

2 (found, l)← (nil, nil) // The found ElementList and its lock

3 loop

4 idx← curr.hash(key)%curr.size
5 next← curr.buckets[idx]

// on nil bucket, insert new ElementList; ensure one lock is held

6 if next = nil then

7 found← new ElementList(0, eavail)
8 if l = nil then

9 found.lock ← elock
10 l← found

11 if cas(&curr.buckets[idx], nil, found) then

12 return 〈found, l〉

// if bucket is a terminal PointerList, lock it and traverse

13 else if next.lock = pterm then

14 if cas(&next.lock, pterm, plock) then

15 l← curr ← next

// on inner PointerList, traverse

16 else if next.lock = pinner then

17 curr ← next

// if ElementList, we may need to resize

18 else if next.lock = eavail then

// Ensure one lock held and stored in l
19 if l 6= nil ∨ cas(&next.lock, eavail, elock) then

20 if l = nil then l← next
// if bucket not full, return it

21 if next.count < EMAX then

22 return 〈next, l〉

// if key in bucket, return it

23 if next.bucket.contains(key) then

24 return 〈next, l〉

// Need to resize. Invalidate the ElementList

25 next.lock ← GARBAGE
// Simple case: no locked PointerList

26 if curr.lock = pinner then

// Create PointerList from ElementList

27 p← EToP (next, pinner)
28 if backPath(p,map) = DEPTH then

29 p.lock ← plock

30 l← p

// atomically install new PointerList

31 atomic curr[idx]← p

// Tricky case: need to resize locked PointerList

32 else

// Create larger PointerList from old PointerList

33 p← PToBiggerP (curr)
34 p.lock ← plock

35 curr.lock ← GARBAGE
36 l← p

// replace curr with p in curr’s parent

37 atomic curr.parent.setTo(p)
// prepare for next iteration, with p replacing curr

38 curr ← p

Armed with the GetEList function, Algorithm 2

presents lookup, insert, and remove operations. They em-

ploy the same pattern: they use GetEList to get a

locked ElementList in which their operations can oc-

cur. They perform their operation, and then unlock the

ElementList.

Algorithm 2: Insert, lookup, and removal operations

function Lookup (map, key)
1 res← NOTFOUND
2 (elist, lock)← GetEList(map, key)
3 for i ∈ 0 . . . elist.count− 1 do

4 if elist.keys[i] = key then

5 res← 〈elist.keys[i], elist.values[i]〉
6 break

7 lock.release
8 return res

function Insert (map, key, value)
1 (elist, lock)← GetEList(map, key)
2 for i ∈ 0 . . . elist.count− 1 do

3 if elist.keys[i] = key then

4 elist.values[i]← value
5 lock.release
6 return

7 elist.keys[count]← key
8 elist.values[count]← value
9 elist.count← elist.count + 1

10 lock.release

function Remove (map, key)
1 (elist, lock)← GetEList(map, key)
2 for i ∈ 0 . . . elist.count− 1 do

3 if elist.keys[i] = key then

4 elist.keys[i]← elist.keys[elist.count− 1]
5 elist.values[i]← elist.values[elist.count− 1]
6 elist.count← elist.count− 1
7 break

8 lock.release

C. Iteration

Go’s map supports iteration, but the iteration order is not

guaranteed to be the same, even if the map is unchanged

since the previous iteration. While this feature was not

designed with concurrency in mind, it is an essential enabler

for our iteration algorithm.

A sketch of the iteration algorithm appears Algorithm 3.

To iterate through the map, we begin by selecting a random

bucket in the root PointerList. From that point, we

iterate over the entire set of buckets in the root, via a

linear traversal. For each bucket, we follow roughly the

behavior of GetEList: If the bucket is nil, it is skipped.

If it is an ElementList, we lock it and then iterate

over its elements. If it is an inner PointerList, we

recurse into it, select a starting bucket at random, and

repeat the process. During the recursion, if we encounter a

terminal PointerList, we lock it, and then recurse into

it, taking care not to lock its ElementLists. To reduce

convoying, we maintain per-iteration lists of “busy” objects.

Whenever an iteration encounters a locked ElementList

or PointerList, we save the address of its parent’s ref-

erence to it, and defer visiting it until later in the execution.

There are several benefits to this algorithm. Only one lock

is held at a time, and hence iteration cannot participate in

deadlocks. Second, Go’s requirement of an unpredictable

iteration order is enhanced: we randomize at the level of each

PointerList. Third, we leverage randomized iteration



Algorithm 3: Simplified pseudocode for iteration. For

clarity of presentation, we do not limit DEPTH .

// Perform a function (λ) on every element of the map

function StartIteration (map, λ)
// Keep track of passed-over buckets

1 deferred← new set〈PointerList, Integer〉()
2 EnterPList (map, λ, deferred) // Recall: the map is a PointerList

3 HandleDeferred (λ, deferred) // Visit passed-over buckets

// Visit each bucket of a PointerList, starting at a random position

function EnterPList (plist, λ, deferred)
1 start← random(plist.size)
2 for i ∈ 1 . . . plist.size do

3 ProcessPList

(plist, (start + idx)%plist.size, λ, deferred)

// Within a bucket, decide whether to recurse or process an ElementList

function ProcessPList (plist, ip, λ, deferred)
1 if plist[ip] = nil then

2 return // no data to pass to λ from this bucket

3 else if plist[ip].lock = pinner then

// Recurse into child PointerList

4 EnterPList (plist[ip], λ, deferred)

5 else if plist[ip].lock = eavail ∧ cas(&plist[ip], eavail, elock)
then

// Iterate over entries in locked ElementList

6 for i ∈ 1 . . . plist[ip].count do

7 λ(plist[ip].keys[i], plist[ip].values[i])

8 plist[ip].lock = eavail

9 else

// Bucket is garbage, locked, or being resized... defer processing

10 deferred← deferred ∪ 〈plist, ip〉

// Handle PointerList elements that were deferred

function HandleDeferred (λ, deferred)
1 for 〈plist, ip〉 ∈ deferred do

2 if plist[ip].lock = pinner then

// Bucket was rehashed, so recurse into it

3 deferred← deferred− 〈plist, ip〉
4 EnterPList (plist[ip], λ, deferred)

5 else if

plist[ip].lock = eavail ∧ cas(&plist[ip], eavail, elock)
then

// Iterate over entries in locked ElementList

6 deferred← deferred− 〈plist, ip〉
7 for i ∈ 1 . . . plist[ip].count do

8 λ(plist[ip].keys[i], plist[ip].values[i])

9 plist[ip].lock = eavail

10 if deferred 6= {} then

11 optionalBackoff()
12 goto 1

order to prevent convoy effects: iterators do not start at the

same point, and hence are unlikely to visit ElementLists

in the same order. The guaranteed variation in order also

allows us to maintain the busy object list, without presenting

unexpected behavior to the programmer. In essence, Go’s

desire to prevent programmers from relying on implementa-

tion artifacts transforms into a language-level semantics that

enables concurrent iteration with minimal waiting, though

the guarantees are weaker than Go’s sequential map.

IV. IMPLEMENTATION

The IHT provides the same API as the sequential map. As

we shall see in Section V, this does not hold for library-based

concurrent maps for Go. In this section, we describe the IHT

implementation, and discuss the guarantees it provides.

A. Compiler Integration and Transformations

The default Go map implementation is tightly coupled

with the compiler and runtime. To provide the same syntax

for the IHT, it must be implemented by the compiler as well.

However, the existing compiler infrastructure is insufficient:

a mapaccess or mapassign does not return a value, but

instead returns a live, internal pointer into the map. While

we can acquire the lock protecting the referenced data before

one of these calls returns, it is unreasonable to delegate lock

release to the programmer.

When the compiler generates a mapaccess or

mapassign call, the returned pointer is live for a short

duration. The next instruction dereferences the pointer, either

to memcpy the (large) value to memory, or to copy the

(machine word-sized or smaller) value to a register. Subse-

quently, the pointer is not live, so the lock can be released. In

our lock implementation, the same function can release the

lock, regardless of whether it protects an ElementList or

a maximum-depth PointerList. To exploit this property,

we extend the API in Listing 1 so that functions retrurn

references to both the lock and the value.

An additional complication is that multiple calls to

mapaccess or mapassign could occur in a single state-

ment (e.g., a = m[b] + m[c]). The current Go imple-

mentation performs the accesses sequentially, and thus we

only hold one lock at a time. In the interests of remaining

future-proof, we observe that the keys could hash to the same

ElementList, as the seed for each PointerList’s hash

function is randomly generated at run-time. If the Go com-

piler were to allow both pointers to be live simultaneously,

in addition to needing deadlock avoidance we would need

to make our spin locks reentrant.

B. The sync.Interlocked Interface

The above mechanism provides atomicity for individual

map accesses, but not atomicity for multiple statements

accessing the same map element. For complex individual

statements, we could automatically defer all lock releases

until the end of the statement, but doing so would introduce

the possibility of deadlock when multiple map accesses, with

different keys, are performed in a single statement.

Instead, we provide a means for exposing the map’s locks

to the programmer. The sync.Interlocked(map,

key) library function acquires the lock associated

with a particular key in a particular map, and

sync.Release(map) releases that key’s lock. Between

the calls, a thread can make multiple accesses to a map

element, without intermediate results being visible to other

goroutines. Exposing these operations as functions, instead

of as a keyword and lexical scope, supports the Go idiom



in which the defer keyword can be used to ensure that

locks are released upon error.

When sync.Interlocked is passed a key not present

in the map, room for the key/value pair is created in the

map. We extended the runtime to track uses of the pair; if

an automatically-created pair is never assigned, it is deleted

during sync.Release. Similarly, if a key is deleted from

the map during sync.Interlocked execution, the space

is not reclaimed until sync.Release.

Each goroutine has a private context, which is visible only

to the runtime. This context can be used in scenarios where

runtime features require thread-local storage. In our imple-

mentation, interlocked access exploits this space to optimize

map accesses: in the IHT’s mapaccess, mapassign, and

mapdelete functions, as well as the lock release functions

we insert during compilation, we check if an interlocked

operation over the map/key combination is active. If so, all

traversal required to locate the key/value pair can be elided,

as can any locking/unlocking.

Go’s runtime detects racy map accesses. Similarly, we

track calls to sync.Interlocked and ensure that mul-

tiple keys from the same map are never simultaneously

interlocked by one goroutine. Since the mapping of keys

to ElementLists is invisible to the programmer, this

ensures that deadlocks will not occur when the run-time

choice of hash function leads to two goroutines issuing

conflicting interlocking accesses while holding locks. (Note

that when atomicity can be ensured through other means,

the programmer can use a new goroutine to concurrently

access other keys in the map. If the goroutine conflicts

with the parent, it will block until the parent’s interlocked

execution completes.) We leverage goroutine-local storage

to limit overhead for these dynamic checks to detect and

prevent acquisition of multiple locks during interlocked

execution. We do not forbid overlapping interlocked accesses

to different maps.locking order.

When keys are known statically, it is trivial to support

multi-key operations. Deadlock is not possible because the

locks can be hashed in advance, and then acquired in an

order that is equivalent to in-order traversal of the IHT. To

handle keys that map to the same ElementList, and to

continue to support race detection, requires overhead linear

in the number of keys.

C. Iteration

Existing approaches to iteration in concurrent collections

take one of two approaches. On the one hand, an atomic

snapshot provides a copy of the collection, such that there

existed a point in time when the contents of the collection

were identical to those presented in the snapshot. On the

other hand, non-atomic iteration provides weaker guarantees,

but is typically less costly. For example, in Java, an iteration

through a concurrent collection is not linearizable: it can

“miss” items that were concurrently added by other threads.

Despite the appeal of atomic snapshots, we deemed them

impractical for the IHT. If we were to provide snapshots

without copying, then an iteration would continually grow

its lock set, until it held locks over the entire map. Such a

technique would strangle concurrency, and forbid concurrent

iteration. Indeed, since Go specifies iteration returns keys

in a random order, we would need to eagerly serialize all

iterations, since concurrent iterations would otherwise start

at different parts of the map and then deadlock. If, instead,

we created a snapshot by copying all map contents to a tem-

porary location, we would incur space overhead proportional

to the number of concurrent iterations. This could cause out-

of-memory errors for large maps. Furthermore, a copy-based

atomic snapshot offers weak guarantees to programmers: a

key in the snapshot may no longer be present in the map,

necessitating additional error handling.

Our iterator holds one lock at a time, and generates

values from one locked subtree at a time. Since resizing

is localized to a subtree of a PointerList, we can safely

release one lock before acquiring the next: once an element

is visited during iteration, it cannot be moved such that

the iterator encounters it again. This simplifies reasoning

about correctness: since only one lock is held by an iterator

at any time, two iterations cannot deadlock. At the same

time, while some key/value pairs can be missed, every pair

returned by the iterator is guaranteed to be present in the

map at the time it is returned. Furthermore, the pair is

present in a locked subtree, owned by the thread performing

the iteration. Consequently, the iterating thread can safely

modify or remove the pair without racing with concurrent

map operations that attempt to use the same key.

V. PERFORMANCE EVALUATION

In this section, we explore two performance criteria. First,

we evaluate the performance of the IHT algorithm against

state-of-the-art. We perform this evaluation in Java, so that

all algorithms can be on the same footing. The experiments

focus on the common set of operations available to the IHT

and its competitors: insertion, removal, and lookups of a

single element. Second, we look at the behavior of the IHT

when implemented in Go, and compare against the best

concurrent map implementations for Go. The experiments

consider both elemental operations and iteration.

Both sets of experiments were conducted on a machine

with two Xeon X5650 CPUs (6 cores/12 threads per CPU),

12 GB of RAM, Ubuntu Linux 16.04.1 (kernel version

4.4.0), and the Go 1.6 compiler. We used the 64-bit Server

JVM version 1.8.0 11-b12. We conducted additional exper-

iments (not presented in this manuscript) on a single-chip

Core i7-4770, and observed the same performance trends.

A. Raw IHT Performance Evaluation in Java

The two most scalable known hash table implementa-

tions [13] are the Split Ordered List (SOList) [18] and the re-



sizable nonblocking hash set (LFArray) [20]. Both are lock-

free data structures with highly optimized implementations

in Java. Based on these data structures, we consider three

comparison points:

• The SOList uses a sorted lock-free list [29], [19] to

store key/value pairs, and employs an auxiliary fixed-

depth “directory” of hash values to rapidly jump to

the position within the list where an insert, remove, or

lookup should take place. To iterate over the SOList,

a thread accesses the underlying list directly. As a

nonblocking data structure, operations are achieved by

using a CAS to insert or remove a list node. Update

operations are not supported. The SOList can expand

while preserving O(1) overhead, but like the IHT, can

not shrink in response to a significant decrease in the

number of items it holds.

• The LFArray uses one level of indirection to reach an

array of pointers to “freezable sets”, or “FSets”. An

FSet resembles our ElementList, in that it includes

an array of keys. Like the SOList, a lookup does not

require any CAS, and reaches the appropriate FSet in

O(1) time. However, to insert or remove an element, the

LFArray uses copy-on-write of an FSet, and then uses

a CAS to install the copy. The LFArray resizes (both

expanding and shrinking) by creating a new array, and

then lazily moving elements into it.

• LockArray is a locking version of LFArray. The use of

locks within FSets avoids copying. However, lookups

must lock an FSet before performing a lookup, which

can create more overhead in read-dominated workloads.

In all three cases, the data structure constrains the hash

function, in order to ensure the correctness of resizing. For

consistency, we use the same hash function for the SOList,

LFArray, LockArray, and our Java IHT.

Strictly speaking, the available Java implementations of

LFArray. LockArray, and SOList are not maps, but rather

hash sets. We emulate a set in our Java IHT implementation

by making the value equal the key. Figure 2 compares the

four algorithms with two different key ranges (8-bit and 16-

bit), and two different operation mixes: On the left, inserts,

lookups, and removes are selected with equal probability. On

the right, 80% of operations are lookups, with the remainder

split between inserts and removes. Note that a slowdown at

2 threads is expected, due to cross-chip communication.

When the key range is 8-bits, LockArray has the

best performance, and IHT performs second best. In these

cases, SOList suffers from the overhead of its directory, and

LFArray suffers from wasted work: if two operations are

simultaneously copying the same bucket, one will eventually

fail and retry its operation. In such cases, throughput is

better when one of those threads waits on the other, via

a spinlock, and then modifies an object without performing

a copy. In the 8-bit experiment, the shape of the LockArray

and IHT are virtually the same, with the main difference
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Figure 2: Microbenchmark performance in Java

being the cost of lock acquisition: in LockArray there are

simple spinlocks, whereas IHT uses CMLocks.

With 16-bit keys, the IHT has additional levels of in-

direction versus the LFArray and LockArray. Thus while

all algorithms scale roughly equivalently, the IHT pays a

penalty. In addition, we see that at 80% lookup, the lock-

free algorithms are more likely to outperform the lock-based

ones: when conflicts are rare, the lock-free techniques avoid

any CAS overheads on 80% of their operations. This more

than compensates for the cost of copying in the LFArray,

and for the cost of pointer chasing in the SOList. However,

the IHT provides stable, scalable performance that remains

competitive. In particular, the high rate of memory allocation

in the SOList leads to unstable performance.

These experiments favor prior work, since the IHT uses a

key and value, while the other data structures only manage

keys. Nonetheless, the IHT always shows good scalability.

Furthermore, the IHT supports features that are not available

in those data structures, such as iteration (not present in the

LFArray and LockArray) and a map interface (not present

in the SOList and LFArray). We now turn our attention to

the Go language, where we can assess the importance of our

tight integration into the Go map API.

B. The Benefit of Integrating Into Go

We now evaluate IHT performance in Go. Integration of

the IHT into Go was not trivial, requiring several thousands

of lines of changes to the Go compiler and run-time libraries.

However, doing so made it possible to leverage the same

features as are available to the sequential Go map.

The LFArray and LockArray algorithms do not support

iteration: if a resize occurs, it is possible for an item to be

visited twice, or missed entirely. Thus we only carry forward



the SOList and IHT evaluation from the prior section. In this

case, we use the open-source SOList implementation, avail-

able in the gotomic [30] package. Note that it supports a

map interface, instead of the set interface of the Java SOList

implementation. We add three more comparison points:

• Streamrail – A lock-based map, implemented as a fixed-

size array of RWMutex-protected Go maps [31].

• RWMutex – A RWMutex-protected default Go map.

• Mutex – A Mutex-protected default Go map.

Since SOList and Streamrail are library-based, each must

provide its own hashing strategy. SOList allows arbitrary key

types, but the programmer must provide an appropriate hash

function. Streamrail requires keys to be strings, and values to

be interface{}, and then uses its own hash function. We

used the default configuration for each map: in Streamrail,

there are 32 buckets in the top-level map. In SOList, there is

no bound on the maximum depth of the directory tree that

indexes into the lock-free list.

We configured the IHT with 8-entry ElementLists

and variable PointerList sizes: the root PointerList

was 32 elements, with a doubling of PointerList capac-

ity at each subsequent level. With this configuration, and a

default DEPTH of 4, the IHT can grow to hold up to

53M elements without resizing a last-level PointerList.

When configured to store 64-bit integer key and 64-bit

integer value pairs, the IHT grew to require roughly 2GB of

RAM when 10M random elements were inserted, whereas

the default Go map consumed 600MB to hold the same data.

We ran the same test with Streamrail’s Concurrent Map,

which is backed by 32 Go maps. Each of Streamrail’s maps

holds fewer elements, but must be resized independently,

resulting in 1.1GB of memory consumption. The SOList,

which uses a linked list as its underlying data structure,

requires many small allocations. Even though it is free

of internal fragmentation, the cost of individual list nodes

results in a total space overhead of 2.6GB. When elements

are removed from the SOList, marker nodes in the list,

and all nodes of the directory, must remain. However,

nodes holding data can be reclaimed. Similarly, in the IHT,

removals result in ElementLists being reclaimed, but not

PointerLists. The IHT shrinks to about 500MB when

filled with 10M elements and then emptied. The Go map,

and the set of maps in Streamrail, never shrink.

Microbenchmark Performance: Figure 3 repeats the

experiments from Section V-A. However, now integer keys

are 64 bits, and each implementation stores a byte-sized

value at each key. As before, we consider 8-bit and 16-

bit keys, and 33% and 80% lookup ratios. Again, each data

point is the average of 10 trials.

Surprisingly, the IHT’s raw performance is worse in Go

than in Java. Some of this is attributable to a different testing

harness. The remainder is due to differences between the Go

compiler’s static inlining policy, and the ability of the JVM

to inline at run time, based on a program profile. We suspect
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Figure 3: Microbenchmark performance in Go

that differences in garbage collection algorithms could also

explain part of this gap. In all cases, these are overheads

that are common to all of the Go map implementations we

considered, and do not affect relative performance.

As expected, the IHT has more latency than a lock-

protected default map. At one thread, Go’s mutex imple-

mentation is very efficient, and its map is highly optimized

for sequential code. There is only one level of indirection in

the common case, all hashing is performed in the runtime,

and the use of a single flat array to store all data results

in good locality. While the IHT also has good locality and

an efficient lock implementation, it has more indirection:

in the 8-bit case, some ElementLists are reached directly

from the root PointerList, but since we use the built-in Go

hash function, collisions cause some elements to have two

PointerLists before the ElementList is reached. For the 16-

bit case, the cost goes up to three PointerLists for some keys,

or four levels of indirection.

The IHT outperforms the SOList and Streamrail at one

goroutine. In the case of SOList, the implementation keeps

the depth of the directory low, but each key/value pair is

in its own list node, leading to little locality. In Streamrail,

the overhead of string types for the keys, and one additional

level of indirection for the sub-maps, create less latency than

SOList, but more than IHT.

The IHT quickly scales past the default Go maps. At 2

goroutines, the IHT matches the 2-goroutine performance

of the Go map, and at 4 goroutines, the IHT outperforms

the Go map’s peak performance. It then scales up to the

full size of the machine (24 hardware threads), with a slight

bend at 12 goroutines (where simultaneous multithreading

(SMT) [32] begins). While the RWMutex provides better
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Figure 4: Iteration microbenchmark

performance than a simple Mutex, cache contention for the

lock is a significant impediment to scalability even when

80% of operations are read-only.

Neither the SOList nor Streamrail scales as well as the

IHT. This is even true in SOList with 80% lookups, where

SOList lookup operations do not use any CAS instructions.

We identified three main causes for the superior scaling of

IHT. First, the Go SOList implementation relies on shared

counters to manage the maximum depth of its directory, and

these counters can become a bottleneck, especially on multi-

chip machines. Second, Streamrail’s use of a lock table,

instead of locks embedded with data, means that concurrent

lock acquisitions can cause cache invalidations in concurrent

hardware threads. Lastly, the SOList provides less locality

than IHT, since each key/value pair is its own list element.

With 16-bit keys, the cost is especially great, since the key

range causes an increase in the depth of the SOList directory,

and directory nodes also have little locality.

C. Iteration Performance

One of the essential features of the IHT is its support

for iteration. We created a microbenchmark with a 100%

mix of iterations by each goroutine. The map is pre-filled

with either 256 or 64K elements, but now we consider

two iteration approaches: read-only, in which no operation

changes a value or inserts/removes elements, and read-write,

in which all operations change the value of each key they

encounter. We count a complete iteration through the data

structure as a single operation.

For read-only iteration, no concurrency control is re-

quired. In this case, Go allows concurrent access to the

default map. Thus in Figure 4, we compare IHT, Streamrail,

SOList, and an unsynchronized map. When there is no

Mutex to acquire, the unsynchronized map scales perfectly

up to 12 goroutines, and then continues to scale, at a slower

rate, as SMT results in hardware threads sharing cores.

For small maps, the SOList also outperforms the IHT

under read-only iteration. The SOList’s nonblocking im-

plementation can avoid any CAS instructions during an

iteration, and the lack of insert and remove operations avoids

the need for any accesses to the shared counters used by

the SOList to manage directory height. Thus the SOList

enjoys disjoint-access parallelism [33]. In contrast, the IHT

is unaware of the read-only nature of the workload, because

it uses the Go map interface (in which reads and updates

use the same API call). Thus each iteration acquires many

locks. With 16-bit keys, however, the cost of locking in IHT

is roughly equal to the indirection overheads and lack of

locality in SOList, and the two maps perform equivalently.

Both SOList and IHT outperform Streamrail. For a single

iteration operation, Streamrail creates one goroutine per

bucket, and then each of the 32 goroutines executes in

parallel. While the locks protecting the buckets are acquired

for reading, and hence goroutines can make progress, each

tick along the X axis corresponds to an additional 32

goroutines launching and coordinating with their parent,

each time the parent performs an iteration. These goroutines

communicate with the parent goroutine via channels, and the

aggregate overhead is greater than the gain in concurrency.

Unfortunately, SOList does not support mutating iteration,

because the nonblocking implementation cannot guarantee

that, upon returning a key/value pair, that pair remains in

the map. Streamrail provides mutating iteration, so long as

there are not concurrent insert/remove/lookup operations. As

with read-only iteration, the heavy use of goroutines creates

high latency. In addition, the per-bucket locks must now be

acquired exclusively, rather than in read mode. With only 32

buckets, and 32 goroutines per thread, most goroutines are

blocked at any time on our 24-thread machine.

Comparison of IHT to mutating iteration in a mutex-

protected default Go map shows equivalent performance

at 2 threads, with IHT outperforming the peak Go map

performance at 4 threads and above. With 8-bit keys, our

convoy avoidance plays an essential role. As concurrency

increases, goroutines scatter through the IHT as they choose

random starting points. However, with such a shallow tree,

goroutines quickly collide as concurrency passes 8 gorou-

tines. By deferring processing of locked ElementLists, and

revisiting them later, iteration typically avoids all spinning.

We observe that Streamrail, SOList, and IHT all provide

weak iteration guarantees. In Streamrail, one sub-map is

locked at a time, and thus each element returned by the iter-

ator is present in the map, but the set of returned elements is

not an atomic snapshot. In SOList, one element is returned at

a time, without preventing concurrent mutations throughout

the remainder of the underlying list. SOList cannot handle

mutation during iteration. IHT’s behavior is like Streamrail:
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Figure 5: Mixed workload with 2.5% iteration, and remain-

ing operations split evenly.

every element that is present in the map for the duration of

an iteration is returned by the iterator, but the entire set of

returned items is not an atomic snapshot.

D. Combined Performance

Lastly, we consider workloads in which iteration is con-

current with inserts, lookups, and removals of key/value

pairs. As above, we count each iteration across the map

as a single operation. However, threads now have a 2.5%

chance of performing an iteration, with the remaining op-

erations split evenly among inserts, lookups, and removes.

We consider read-only iteration and read-write iteration. In

the case of read-only iteration, the possibility of concurrent

accesses necessitates that the default Go map be protected by

a Mutex. Again, SOList does not allow read/write iteration,

and is not presented. Additionally, Streamrail deadlocks for

the read/write workload, because of a race when the number

of elements in a sub-map changes after an iterator creates

the channels used by its spawned goroutines.

Figure 5 shows a composition of the prior two sets of

experiments. In both SOList and IHT, neither iteration nor

elemental operations impedes the expected performance of

the other, and both scale well. For the first time, SOList

outperforms the default Go map’s peak. In the 8-bit test

with read-only iteration, where SOList’s iteration greatly

outperformed IHT before, we now see equivalent perfor-

mance, tipping slightly in favor of IHT. In the 16-bit case,

where SOList and IHT perform equivalently, the higher

performance of IHT’s elemental accesses gives it a slight

edge. As in Figure 4, adding goroutines does not lead to

contention in the IHT, despite long-running iteration. The

invariant that operations only hold one lock at a time,

coupled with randomized start points for iteration, result

in steady scaling. In contrast, read-only iterations, which

reduce the rate at which shared counters are modified, reduce

the significance of a bottleneck in SOList, and help it to

recover performance relative to its scaling in Figure 3.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the Interlocked Hash Table

(IHT), a highly concurrent lock-based map designed specif-

ically for the Go programming language. The IHT employs

a speculative traversal of a fixed-max-depth tree of interme-

diate nodes, which enables it to acquire exactly one lock per

insert/remove/update/lookup operation. By co-locating locks

with data, the net result is negligible contention even when

24 hardware threads are performing simultaneous random

accesses to a small map. The scalability of the IHT, and

its optimized implementation inside of the Go compiler and

runtime, enable it to outperform all known alternatives in

Go, to include lock-free and lock-based open-source maps.

In microbenchmarks, we observed performance up to 7× the

performance of the default map at high thread counts, and a

peak throughput more than 4× the peak achieved speedup

by the default (typically at one thread). Furthermore, even

in Java, where the IHT cannot benefit from tight integration

with the run-time libraries, the IHT is competitive with the

best known map implementations.

The IHT exploits Go’s randomized iteration requirement.

This allows concurrent IHT iterators to begin at random

locations within the data structure, and to delay processing

of any locked regions they encounter during iteration. Our

experiments show an absence of convoying effects, which

enables both read-only and read/write iteration to scale to

the full size of the machine.

Through a minor addition to the sync package, we

provide support for large critical sections over a single map

element, which can easily be extended to multi-element crit-

ical sections. Because the hash functions within the IHT vary

from one execution to the next, the programmer cannot infer

a safe locking order to prevent deadlock cycles. However, the

runtime can determine this information, and for operations

over a set of map locations known at the beginning of the

critical section, we believe it will be possible to guarantee

atomicity and deadlock-freedom.
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