
Hypergraph Analytics of
Domain Name System Relationships

Cliff A Joslyn1, Sinan Aksoy2, Dustin Arendt2, Jesun Firoz1, Louis Jenkins3,
Brenda Praggastis1, Emilie Purvine1, and Marcin Zalewski4

1 Pacific Northwest National Laboratory, Seattle, WA
2 Pacific Northwest National Laboratory, Richland, WA

3 University of Rochester
4 NVIDIA, Santa Clara, CA

Abstract. We report on the use of novel mathematical methods in hy-
pergraph analytics over a large quantity of DNS data. Hypergraphs gen-
eralize graphs, as used in network science, to better model complex multi-
way relations in cyber data. Specifically, casting DNS data from Georgia
Tech’s ActiveDNS repository as hypergraphs allows us to fully repre-
sent the interactions between collections of domains and IP addresses.
To facilitate large-scale analytics, we fielded an analytical pipeline of two
capabilities: HyperNetX (HNX) is a Python package for the exploration
and visualization of hypergraphs; while on the backend, the Chapel Hy-
perGraph Library (CHGL) is a library for high performance hypergraph
analytics written in the exascale programming language Chapel. CHGL
was used to process gigascale DNS data, performing compute-intensive
calculations for data reduction and segmentation. Identified portions are
then sent to HNX for both exploratory analysis and knowledge discovery
targeting known tactics, techniques, and procedures.

Keywords: Hypergraphs, DNS, high performance computing, Chapel.

1 Introduction

Many problems in data analytics involve rich interactions amongst multiple en-
tities, for which graph representations are commonly used. High order (high
dimensional) interactions abound in cyber and social networks, and can only be
represented in graphs as highly inefficiently coded, “reified” labeled subgraphs.
Lacking multi-dimensional relations, it is hard to address questions of “commu-
nity interaction” in graphs: how is a collection of entities A connected to another
collection B through chains of other communities?; where does a particular com-
munity stand in relation to other communities in its neighborhood?

Hypergraphs [4] are generalizations of graphs which allow edges to connect
any number of vertices. Hypergraph methods are well known in discrete math-
ematics, and are closely related to important objects in data science such as
bipartite graphs, set systems, partial orders, finite topologies, and especially
graphs proper, which they directly generalize (every graph is a 2-uniform hyer-
graph). In HPC, hypergraph-partitioning methods help enable parallel matrix
computations [8], and have applications in VLSI [13]. In the network science

2 CA Joslyn et al.

literature, researchers have devised several path and motif-based hypergraph
data analytics (albeit fewer than their graph counterparts), such as in clustering
coefficients [15] and centrality metrics [9].

Complex data commonly analyzed using network science methods, and espe-
cially including cyber data, often contain multi-way interactions. But while they
thus present naturally as hypergraphs, still hypergraph treatments are very un-
usual compared to graph representations of the same data. This is due at least to
the greater mathematical, conceptual, and computational complexity of hyper-
graph methods, since as data objects, hypergraphs scale as O(2n) in the number
of vertices n, as opposed to O(n2) for graphs. In the face of this, complex data
are typically collapsed or are simplified to graphs to ease analysis.

We are accepting the challenge of the complexity of hypergraphs in order to
gain the formal clarity and support for analysis of complex data they provide.
A substantial high-performance computing (HPC) component is thus necessary,
despite hypergraph analytics not receiving much attention in the software en-
gineering community at large, and the HPC community in particular. We thus
pursue a two-fold approach to developing our methods:

1. The Chapel Hypergraph Library (CHGL, https://github.com/pnnl/chgl)
[12]) is a library for hypergraph computation in the emerging Chapel pro-
gramming language [6, 7], for HPC hypergraph processing, large scale anal-
ysis, and data segmentation.

2. We explore single hypergraphs or collections of hypergraphs using HyperNetX
(HNX, https://github.com/pnnl/HyperNetX), a Python library for exploratory
data analytics and visualization of hypergraphs.

In our work, CHGL and HNX are two stages of an analytical pipeline: CHGL
provides a highly abstract interface for implementation of HPC hypergraph al-
gorithms over large data, identifying segments and subsets which can then be
passed to HNX for more detailed analysis.

In this paper we first introduce the foundations of hypergraph mathematics
and hypernetwork science in the context of our CHGL and HNX capabilities. We
then describe the DNS data set, selections of the ActiveDNS data sets from the
Georgia Institute of Technology [1]. We then describe CHGL, before going on
to describe the results of our demonstration analyses. These include both basic
global statistics like degree and edge size distributions, as well as exploratory
discovery of small components involving motif mining and computation of simple
hypergraph metrics to discover outliers.

2 Hypergraph Analytics

An undirected hypergraph is a pair H = 〈V, E〉 with V a finite, non-empty
set of vertices, and E a non-empty multiset of hyperedges e ∈ E (or just
“edges” when clear), where ∀e ∈ E , e ⊆ V . Hypergraphs can be represented
in many forms, two of which are shown in Fig. 1 for a small example H with

HPC Hypergraph Analytics for DNS 3

V = {1, 2, . . . , 9}, representing |V | = 9 IP addresses.5 On the left is an Euler
diagram showing each of eight hyperedges A,B, . . . ,H, representing domains, as
a “lasso” around its vertices. On the right is a V × E incidence matrix I, where
a non-null 〈v, e〉 ∈ I cell indicates that v ∈ e for some v ∈ V, e ∈ E .

Fig. 1: (Left) An Euler diagram of an example hypergraph H. (Right) Its inci-
dence matrix I.

We call each hyperedge e ∈ E an s-edge where s = |e|. Thus all graphs are
hypergraphs, in that all graph edges are 2-edges, for example H = {4, 5}, saying
that the domain H has two IPs 4 and 5. But F = {1, 2, 3, 9} is a 4-edge, with
domain F having those four IPs. Where each column of the incidence matrix of
a graph has exactly two cells, those of hypergraphs are unrestricted.

Our research group is pursuing hypergraph analytics as an analog to graph
analytics [14]. While our development is consistent with others in the litera-
ture [9, 16], our notation and concepts are somewhat distinct. For a more com-
prehensive development see [2].

We say that two edges e, f ∈ E are s-adjacent if |e ∩ f | ≥ s for s ≥ 1. An
s-star is a set of edges F ⊆ E sharing exactly a common intersection f ⊆ V ,
with |f | ≥ s, so that ∀ei, ej ∈ F we have ei ∩ ej = f . An s-path is a sequence of
edges 〈e0, e1, . . . , en〉 such that each ei−1, ei are s-adjacent for 1 ≤ i ≤ n; and an
s-component is a maximal collection of edges any pair of which is connected by
an s-path. The s-diameter of an s-component is the length of its longest short-
est s-path. Comparing again to graphs, graph paths are all 1-paths, and graph
components all 1-components. Our example has two 1-components (shown obvi-
ously), but also four 2-components (listed edge-wise) {A,F,G,H}, {B,D}, {C}
and {E}. Its 3- and 4-components are each single edges of size larger than 3 or
4 (respectively), and it has no 5 or higher components.

Given a hypergraph H, it is possible to construct smaller representations
which capture important properties:

5 H can also be represented as a bipartite graph on the disjoint union V t E , with
each component a distinct part.

4 CA Joslyn et al.

– Note that in our example, the edges A = F and B = D, and the vertices
1 = 9 and 7 = 8, are equivalent, represented as duplicate columns and rows in
I respectively. Collapsing is the process of combining these and replacing
them with a representative, while also possibly maintaining a multiplicity
count to be used for a weighting. The edges E are hereby transformed from
a multiset to a set.

– Additionally, note that after collapsing, the smaller 1-component becomes an
isolated singleton, effectively a collection of non-interacting vertices, or a
diagonal block in I. These are especially common in DNS data. Pre-collapse,
an isolated singleton would indicate the normal, uninteresting behavior in
DNS where a single IP is associated with a single domain, and vice versa.
But post-collapse, they indicate a collection of IPs and domains which are
universally associated only with themselves, effectively forming a set of do-
main and IP aliases. In this work, these are counted and pruned, but in the
future they could be attended to with respect to their multiplicities.

– Finally, note that H ⊂ G is an included edge. Non-included edges are called
toplexes, and not only is the collection of toplexes much smaller than H,
but it is sufficient to derive some hypergraph information, for example s-
components.

Table 1 shows some important statistics for our example, first for the initial
hypergraph, then after collapsing, and finally after removing isolated singletons
from the collapsed hypergraph. For hypergraph data, a vastly high or low aspect
ratio can indicate difficulty in analysis. Note that as reductions commence, the
number of vertices, edges, and cells reduces, while density increases. Finally,
Fig. 2 shows the distribution of node degree (# edges per node) and edge size.

Non-Singleton
Initial Collapsed Components

|V | 9 7 6
|E| 8 6 5
Aspect ratio 1.125 1.167 1.200
Cells 23 14 13
Density 0.319 0.333 0.433

Table 1: Basic hypergraph statistics for our example.

In our pipeline the segmentation steps of collapsing, removing isolated single-
tons, and computing s-components are all performed using CHGL, as are node
degree, edge size, and s-component size distributions. Subsequent exploration
of the structures found within the components themselves, e.g., identification
of stars and computation of diameters, are done via HNX. HNX builds on the
popular library NetworkX [10], which offers metrics and algorithms for the anal-
ysis of graph data. Euler diagram visualizations that appear in this paper are
provided directly by the HNX package.

HPC Hypergraph Analytics for DNS 5

Fig. 2: (Left) Distribution of node degree (# edges per node) in our example.
(Right) Distribution of edge size s.

3 Hypergraph Representations of DNS Data

The Domain Name System (DNS) provides a decentralized service to translate
from the domain names that humans keep track of (e.g., www.google.com) to IP
addresses that computers require to communicate. Perhaps somewhat counter-
intuitively, DNS data present naturally as a hypergraph, in being a many-many
relationship between domains and IPs. While typically this relationship is one-
to-one, with each domain uniquely identifying a single IP address and vice versa,
there are a number of circumstances which can violate this:

– Some domains have aliases so that multiple domains (e.g., misspellings) re-
solve to the same IP address.

– There are large hosting services where one IP serves multiple websites.
– Some domains are used so frequently that they must be duplicated across

hosts and therefore map to multiple IPs.
– IP addresses are randomly reassigned within some small IP block so the

same domain may map to multiple IP addresses when queried over time.

In order to explore large volumes of DNS mappings we used ActiveDNS
(ADNS), a data set maintained by the Astrolavos Lab at Georgia Institute of
Technology (https://activednsproject.org). ADNS submits daily DNS lookups
for popular zones (e.g., .com, .net, .org) and lists of domain names. The data
is stored in Avro format (https://avro.apache.org) which provides structured
records for each DNS lookup in a compressed binary file. Each record contains
information including: query date, lookup input (often a domain name), data
returned by a DNS server (often a list of IP addresses), and IP addresses of the
DNS servers that answered the query. DNS records are also typed according to
different properties (recorded as the qtype field in ADNS) such as the format
of the data and to indicate its intended use. This initial analysis accepted any
reasonable pairing of domain name IP address and did not restrict to any par-
ticular qtypes. Future work will restrict to qtype=1, which map hostnames to
an IPv4 address of the host.

6 CA Joslyn et al.

Our group acquired data from the time period April 24–May 29, 2018, and in
this paper we focus on the single day of April 26, 2018. This day consists of 1,200
Avro files with each file containing on average 900K records. There was some
data cleaning necessary to remove records with empty lookup input or empty
returned data. Additionally we removed any records in which the lookup input
was an IP address or the returned data was a domain name. After cleaning, each
file was reduced to approximately 180K records.

We structured these DNS data as a hypergraph on a vertex set V of IPs
and edge set E of domains. Thus our hypergraphs H coded each domain as a
collection of its IPs. We show results of our anlaysis below in Section 5, including
global statistics and the results of targeted exploration.

4 Chapel Hypergraph Library (CHGL)

The Chapel HyperGraph Library (CHGL) [12] is a prototype exascale library
written in Chapel [6,7] that brings generation, representation, and computation
of hypergraphs to the world of high performance computing (HPC). Thanks
to Chapel, CHGL provides scalability in both shared memory and distributed
memory contexts.

In most cases, data underlying a hypergraph is more complex than CHGL’s
internal representation of vertices and hyperedges as consecutive integers. In
such situations, a hash table that maps user-defined generic properties to the
consecutive identifiers of vertices and hyperedges is used for translation. The
properties are embedded in the internal representation of the hyperedges and
vertices, allowing O(1) bidirectional lookup as well as locality when iterating
over the graph, shared-memory and distributed alike.

CHGL performs segmentation, or reduction, of the data in multiple highly-
parallel phases. Segmentation reduces both the size of the graph to one that HNX
can process in a reasonable amount of time and the computational workload on
CHGL when computing metrics. Proper care is taken to ensure that references
to the collapsed hyperedges and vertices are taken forward to the hyperedge or
vertex that they collapsed into, and that all references to removed hyperedges
and vertices are removed. This is performed in linear time and applies to both
the graph and property map.

To prune away redundant entities, which is generally useful for computation,
hyperedges and nodes are placed into equivalence classes through the process of
collapsing described in Section 2. All but one arbitrarily chosen representative is
removed from the graph. Determining the equivalence class of a vertex or hyper-
edge can be done by using a set or hash table, and can be performed in O(|V |) or
O(|V | log |V |) time, depending on the data structure used. In practice, the time
complexity is often linear or quasilinear, but in the worst-case scenario when the
hypergraph is fully connected, the time complexity is O(|V |2) or O(|V |2 log |V |).

Isolated singletons, as described in Section 2, tend to be uninteresting. After
collapsing, these are pruned away in a straightforward manner.

HPC Hypergraph Analytics for DNS 7

We implemented computation of s-components using a parallel search method,
where we iterate over edges in parallel, and every edge begins an independent
search. The s-neighbors of an edge are marked with the component number
originating from the initial edge. The component number is taken from a global
atomic counter at the beginning of every parallel search. 1-Components are im-
plemented by simply traversing the edges by following included vertices (edge
to vertex to neighbor edge), but 2-components and higher require an imple-
mentation with set intersections to check the cardinalities of adjacencies. This
implementation is well suited for a large number of small components because
most components end up being searched by a single task. The best case scenario
complexity of the parallel search algorithm is linear, and the worst is quadratic
if the maximum number of component collisions occur. The average complexity
in our case is close to linear since the DNS data has a large number of small
components, and most components are handled by a single task.

Obtaining the vertex degree and edge cardinality distributions is simple and
intuitive in CHGL, thanks to Chapel’s high-level abstractions. This particular
operation is short enough that it can be presented in full in Figure 3. We compute
these both pre- and post-collapsing.

Fig. 3: Obtaining the vertex degree distribution in CHGL.

Finally, the s-component size distributions were computed, recording the
number of nodes and edges in each s-component and how many s-components
have each size. This allows us to understand how nodes and edges are distributed,
e.g., is there one giant component and a few small components or are component
sizes more uniformly distributed.

5 Computational Results

We ran experiments on one of the compute nodes of an Infiniband cluster, each
equipped with a 20-core Intel Xeon processor and 132GB memory. All cores
were involved in the experiments. CHGL v0.1.3 was compiled against Chapel
pre-release version 1.18.0 with --fast flag to enable all compiler optimizations.

Execution times of the stages of the CHGL DNS processing pipeline are
shown on the left side of Fig. 4. s-component computation dominates the exe-
cution time for 128 or more files. The s-components are reused when computing
the s-component size distributions, leading to them taking significantly less time.

8 CA Joslyn et al.

Collapsing duplicates and removing isolated components scale linearly, as is ex-
pected for their time complexity. The hypergraph is constructed in about the
same amount of time it takes to collapse it, showing that processing DNS data
is mostly compute-bound.

 0.0001

 0.01

 1

 100

 10000

 1x10
6

 1 4 16 64 256 1024

T
im

e
 (

s
e
c
o

n
d
s
)

of Files

CHGL Execution Times

Hypergraph Construction
Collapsing Duplicates

Remove Isolated Components
Connected Components

Metrics
Blacklist

Total

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 4 16 64 256 1024
R

e
d
u

c
ti
o
n
 (

%
)

of Files

Reduction from Segmentation

Post-Collapse Vertices Reduction
Post-Collapse Edges Reduction

Post-Removal Vertices Reduction
Post-Removal Edges Reduction

Fig. 4: (Left) Execution times (log-log scale). (Right) Effectiveness of reduction
from segmentation.

The purpose of segmentation is to reduce the size of the graph while also
maintaining the data that is of interest. The right side of Fig. 4 shows the
compression as a result of performing segmentation. Collapsing of duplicate edges
results in the most compression, reducing the graph from 55% at one file to over
90% at 1024 files, which can be expected to improve further when more data
is processed. Removing isolated components results in less compression as data
size increases, likely due to the premature marking of components as isolated
prior to having all of the data. Perhaps with larger amounts of data, there will
be a convergence to a stable number of isolated components in the entirety of
the DNS network. Note that there are very few duplicate IP addresses on smaller
samples, but that may change as more data is processed; nonetheless, collapsing
duplicate vertices may be unnecessary and can possibly save some time.

Above we reported on scaling of loading and compute time using CHGL on
varying numbers of ActiveDNS files, from 1 to 1,024. Here we report on analysis
of the hypergraph built from one full day, April 26, 2018, comprising 1,200 files.
See Table 2 for basic count statistics.

The node degree and edge size distributions are shown in Figures 6a and 6c.
Except for the small increase around x = 102 the node degree distribution looks
like a power law or heavy tailed distribution typical in real-world graphs [3]. The
degree distribution has a general decreasing tendency from x = 1 to x = 70, it
increases by roughly 1,000 through x = 80, and then returns to the downward
trend. We do not know why this occurs, but it is possible that it could be an
artifact of DNS server configuration practices. Edge size distribution also seems

HPC Hypergraph Analytics for DNS 9

Non-Singleton
Initial Collapsed Components

|V | 10.6M 10.3M 557K
|E| 131.2M 11.0M 1.2M
Aspect ratio 0.081 0.941 0.460
Cells 157.4M 25.7M 15.9M
Density 1.14 E-7 2.26 E-7 2.35 E-5

Table 2: Basic hypergraph statistics for ActiveDNS data for April 26, 2018.

to be heavy-tailed although somewhat more noisy for low edge sizes than the
degree distribution.

See the second column in Table 2 for the simple count statistics of the col-
lapsed hypergraph. Notice that collapsing resulted in a much more square in-
cidence matrix since only 2% of nodes were collapsed while 92% of edges were
collapsed. The number of cells in the collapsed hypergraph incidence matrix is
now reduced to 16% of the full hypergraph.

The distributions of node and edge duplicate counts are shown in Figure 5.
Notice that the distribution of duplicate edge counts has a similar shape as the
node degree distribution of the original hypergraph with a slight increase around
x = 102. After seeing this it is possible that the nodes which had degree around
70-80, where this increase occurs, were actually in many duplicate edges which
are now collapsed. The node degree distribution for the collapsed hypergraph
found in Figure 6b further supports this hypothesis since the increase around
x = 102 in the node degree distribution is absent.

Fig. 5: Distribution of duplicate node counts (top) and edge counts (bottom).

The edge size distribution post collapse is shown in Figure 6d. This distribu-
tion is very similar to that of the original hypergraph, although it appears less
noisy up through approximately x = 20. This is not surprising since there were

10 CA Joslyn et al.

not many duplicate nodes removed, so edges that remained likely stayed close
to their original size.

After collapsing duplicate nodes and edges we removed all 9,784,763 isolated
singleton edges, or 89% of all remaining edges. The only differences between
the collapsed hypergraph and the hypergraph after removal of isolated singleton
components is the number of degree 1 nodes and the number of size 1 edges.
Therefore, we omit the final node degree and edge size distributions since they
are identical to the post-collapse distributions except for the points at x = 1.

Comparing the pre-collapse (left), post-collapse (right), and post-removal
distributions (not pictured) in Figure 6, we observe that hypergraph collapsing
and removal significantly alters the shape of degree and edge size distributions. In
addition to the qualitative differences apparent from the plots, these differences
can also be quantified using the Kolmogorov-Smirnov (KS) distance metric, a
normalized statistic between 0 and 1 in which larger values indicate greater
degree distribution dissimilarity. In the case of the degree distributions (top row),
KS distance suggests the pre-collapsing hypergraph differs significantly from the
post-collapse and post-removal degree distributions, with KS values of 0.36 and
0.34, respectively. In the case of the edge-size distributions (bottom row), the
most pronounced difference is between the pre-collapsing and post-removal edge
size distribution, with a KS value of 0.60. Here, the large KS distance reflects the
dramatic changes at the head of the distribution, where the number of 1-edges
decreases from 118 million to 369 thousand.

6 Analytical Results

The next step toward finding interesting subgraphs within the single day of
ActiveDNS data was to compute and explore s-components. CHGL computed
s-components of the hypergraph post-collapse and post-removal of isolated sin-
gletons for s = 1, 2, 3. Before exploring these components themselves we report
the distribution of component sizes (both node and edge counts) which are found
in Figure 7. As s increases the shapes of these distributions do not change much
but they do tend to skew more toward smaller components and the distribution
flattens slightly. This is required since every s-component is contained within
some s′-component for s′ < s: as s increases components can only decrease
in size. These distributions also show that while there are some very large s-
components the majority are very small. Additionally, we see that the notion of
a “giant component” is much more prevalent in the set of 1-components than
for s = 2 or 3. Indeed, as s increases the largest component breaks up and the
jump between the largest component and second largest becomes smaller.

Once the hypergraphs were segmented into s-components by CHGL we pro-
ceeded to do exploratory analysis using HNX. In particular, we looked for:

– Occurrences of 1-stars within the 1-components, and
– s-components with maximum s-diameter for s = 2, 3.

Recall that a 1-star is a small hypergraph in which all edges pairwise intersect
in one node, and that one node is the same across all pairwise intersections. The

HPC Hypergraph Analytics for DNS 11

(a) Initial node degree distribution (b) Post-collapse degree dist.

(c) Initial edge size distribution (d) Post-collapse edge size dist.

Fig. 6: Node degree and edge size distributions, on a log-log scale, for April 26,
2018 DNS hypergraph. The x and y axes are the same across both node plots and
across both edge plots to illustrate the changes through the collapsing procedure.

(a) 1-component node
count distribution

(b) 2-component node
count distribution

(c) 3-component node
count distribution

(d) 1-component edge
count distribution

(e) 2-component edge
count distribution

(f) 3-component edge
count distribution

Fig. 7: Node and edge count distributions, on a log-log scale, for s-components
within simplified April 26, 2018 DNS hypergraph. The x and y axes are the
same across all three node count plots and across all three edge count plots to
illustrate the changes as s increases.

12 CA Joslyn et al.

simplest 1-star has all edges of size 2, see Figure 9a for an example of this case.
In our DNS use case a star is a collection of domains which all share exactly
one IP address but each also have their own separate IP address(es). These are
consistent with the behavior of content delivery networks (CDN), geographically
distributed networks of servers with the goal of quickly and reliably serving up
content to a variety of users, which could explain the existence of stars with a
diverse set of IP addresses since a consideration for IP assignment is geographic
location. Star motifs are also consistent with DNS sinkholes and domain hosting
services.

We searched the 1-components for 1-stars and looked for size outliers. The
distribution of number of edges per star is shown in Figure 8. We can see that

Fig. 8: Distribution of star sizes (# of edges).

there is one notable outlier, a star with 701 edges and 642 toplexes. The do-
main names within this star appear to be mostly randomly generated within the
.com and .net zones (e.g., twlwta.com, comgslklpa.net) and the common IP
address within all domains is 17.17.17.17. A WHOIS search finds that this IP
address is within the network range of Apple, Inc. The other 642 IPs present
in this star come from 640 distinct of /16 ranges. This is consistent with “DNS
sinkhole” behavior where traffic to a variety of (potentially malicious) domains is
redirected to a benign location [5]. And later (i.e., not on April 26) DNS searches
for a sample of domains within this star have a Start of Authority (SOA) record
with “sinkhole root@sinkhole” as the name and contact for the server.

Unlike this largest star which had IP addresses in many different ranges,
smaller stars such as the one shown in Figure 9a tend to have all IPs and do-
mains within the same, or a relatively small set of, ranges and organizations.
In this small example WHOIS lookups indicate that the central IP address is
from Google Cloud whereas the leaves are from Microsoft Corporation. All five
domains are registered through the hosting site GoDaddy.com.

To discover interesting 2-components (resp. 3-components) we calculated 2-
diameters (resp. 3-diameters) of each of the components and look more closely
at those with maximal diameter. In the case of the 2-components the maximum
2-diameter is 6 and there is only one 2-component with that 2-diameter, shown
in Figure 9b. The IP addresses in this component all belong to the IP range

HPC Hypergraph Analytics for DNS 13

(a) A small star seen in the ActiveDNS
data.

(b) The 2-component with largest 2-
diameter.

103.86.122.0/24 and the domains are registered to GMO INTERNET, INC ac-
cording to WHOIS records. Moreover, current DNS queries for most of these
domains at a later date resolve to IPs in the range 103.86.123.0/24 and have a
time to live of only 120 seconds. This pattern of quickly changing of IP address
is consistent with the fast flux DNS technique which can be used by botnets
to hide malicious content delivery sites and make networks of malware more
difficult to discover [11].

The large diameter 3-components tell different stories. The maximum 3-
diameter is 3 and there are four 3-components with this 3-diameter. One has
only one toplex with six sub-edges. Two others are fairly simple and, like the
large 2-diameter 2-component, are somewhat chain-like tracing out a long path.
The fourth is quite large with 70 nodes, 189 edges, and all IPs belonging to an
IP range from Amazon Technologies Inc.

7 Conclusions and Future Work

While our research group has been developing hypergraph methods and mathe-
matics over a moderate period, this paper reflects the first application of CHGL
to cyber data.

The current approach is limited in a number of ways. First, ActiveDNS
records data from DNS lookups on a daily basis (or perhaps multiple times
per day), but it does not do continual monitoring. This discrete sampling may
mean that the pipeline misses patterns that would normally be seen in a more
continuous approach. Additionally, the current analysis is for a single day, and
extending to multiple days in the current architecture will exacerbate issues with
memory bounds. This might be mitigated using a theory of dynamic hypergraphs
(much like that of dynamic graphs) to understand the time-evolution of DNS or
similar data.

Additionally, certain DNS relationships are ignored, such as recursive DNS
records where one domain resolves not to an IP address but to another domain
name. This would require more complicated mathematics than just hypergraphs,
likely cell complexes or partial orders, which we have started to consider in our

14 CA Joslyn et al.

research but not yet in our analysis. We also ignore other pieces of metadata like
the authority IP addresses (those servers which answered the DNS request).

Additional future work includes:

– We are extending our prior theoretical work [2, 14] to a full consideration
of the mathematical foundations of hypergraphs for data science, including
spectral approaches and consideration of multiplicity weightings.

– A range of hypernetwork methods generalizing network science centrality,
connectivity, clustering coefficients, etc. are available [2].

– Also central to our approach is the consideration of hypergraphs as multidi-
mensional objects, and thus inherently available for topological applications,
including homology measurement for identification of loops and potential
gaps in the underlying data.

– CHGL is also under active development to include topology, homology mea-
sures, a proper graph library, and a distributed data model.

– Finally, application and data analysis continues, including DNS, additional
cyber data beyond DNS, and additional application domains including com-
putational biology and social hypernetworks.

8 Acknowledgements

This work was partially funded by a US Department of Energy Computational
Science Graduate Fellowship (grant DE-SC0020347).

This work was also partially funded under the High Performance Data An-
alytics (HPDA) program at the Department of Energy’s Pacific Northwest Na-
tional Laboratory. Pacific Northwest National Laboratory is operated by Battelle
Memorial Institute under Contract DE-ACO6-76RL01830.

Special thanks to William Nickless for helpful conversations surrounding the
DNS analysis and interpretation.

References

1. Active DNS project. https://activednsproject.org/. Accessed: 2019-11-26.
2. Sinan G Aksoy, Cliff Joslyn, Carlos Ortiz Marrero, Brenda Praggastis, and Emilie

Purvine. Hypernetwork science via high-order hypergraph walks. arXiv preprint
arXiv:1906.11295, 2019. submitted.

3. Albert-László Barabási and Eric Bonabeau. Scale-free networks. Scientific ameri-
can, 288(5):60–69, 2003.

4. Claude Berge and Edward Minieka. Graphs and Hypergraphs. North-Holland, 1973.
5. Guy Bruneau. DNS Sinkhole. https://www.sans.org/reading-room/

whitepapers/dns/dns-sinkhole-33523.
6. B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel Programmability and the

Chapel Language. Int. J. High Perform. Comput. Appl., 21(3):291–312, August
2007.

7. BL. Chamberlain, E Ronaghan, B Albrecht, L Duncan, M Ferguson, B Harsh-
barger, D Iten, D Keaton, V Litvinov, P Sahabu, and G Titus. Chapel comes of
age: Making scalable programming productive. Cray Users Group, 2018.

HPC Hypergraph Analytics for DNS 15

8. K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V. Catalyurek.
Parallel hypergraph partitioning for scientific computing. In Proceedings 20th IEEE
International Parallel & Distributed Processing Symposium. IEEE, 2006.

9. Ernesto Estrada and Juan A. Rodŕıguez-Velázquez. Subgraph centrality and clus-
tering in complex hyper-networks. Physica A: Statistical Mechanics and its Appli-
cations, 364:581–594, may 2006.

10. AA Hagberg, DA Schult, and PJ Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod
Millman, editors, Proceedings of the 7th Python in Science Conference, pages 11 –
15, Pasadena, CA USA, 2008.

11. jamie.riden. How Fast-Flux Service Networks Work. http://www.honeynet.org/

node/132. Accessed: 2018-11-26.
12. LP Jenkins, T Bhuiyan, Sarah Harun, C Lightsey, S Aksoy, T Stavenger, M Za-

lewski, H Medal, and CA Joslyn. Chapel hypergraph library (chgl). In 2018 IEEE
High Performance Extreme Computing Conf. (HPEC 2018), 2018.

13. George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. VLSI
Design, 11(3):285–300, jan 2000.

14. EAH Purvine, S Aksoy, CA Joslyn, K Nowak, B Praggastis, and M Robinson.
A topological approach to representational data models. In S. Yamamoto and
H. Mori, editors, Human Interface and the Management of Information. Interac-
tion, Visualization, and Analytics (LNCS, volume 10904), pages 90–109, 2018.

15. Garry Robins and Malcolm Alexander. Small worlds among interlocking directors:
Network structure and distance in bipartite graphs. Computational & Mathemat-
ical Organization Theory, 10(1):69–94, may 2004.

16. J. Wang and T.T. Lee. Paths and cycles of hypergraphs. Science in China Series
A: Mathematics, 42(1):1–12, 1999.

