
Networks for High-Performance Computing

Louis Jenkins
University of Rochester

Abstract— In high-performance computing (HPC), low-
latency and high-bandwidth networks are required to maintain
high-performance in a distributed computing environment.
According to the Top500, the two most widely-used networks in
the top 10 supercomputers are Cray’s Aries network intercon-
nect, and Mellanox’s Infiniband network interconnect, which
both take radically different approaches towards their design.
This survey explores the design of each network interconnect,
the ways they provide reliability and fault-tolerance, their
support for remote direct memory access (RDMA), and analyze
the performance of an Infiniband cluster and a Cray-XC50
supercomputer. Finally, the near-future of high-performance
interconnect, obtained from an interview with Steve Scott, Chief
Technology Officer (CTO) of Cray Inc., a Hewlett Packard
Enterprise company, is also examined.

I. INTRODUCTION

To address the ever increasing needs for computational
power, such computations have become more and more
decentralized over time. The technological advancements
from uni-processor to multi-processor systems, from single-
socket to multi-socket NUMA domains, and from shared-
memory to distributed memory, all are testaments to this fact.
Decentralizing computations has many advantages, such as
increasing of available processing elements (PE) available
for balancing the computational workload across, but it
does not come without its challenges. The lower down the
memory hierarchy you go, the higher the latency, where
sometimes the difference between one part of the hierarchy
and another is as much as an order of magnitude. While in
accessing memory that is local to the PE may have a lot
of variability, such as the case of L1 Cache, L2 Cache, L3
Cache, and main memory (DRAM), they are usually within
the span of nanoseconds, while accesses to memory that is
remote to the PE can be in the span of microseconds to
milliseconds. Computations that span across multiple PEs
require communication over some type of network, and in
the context of high-performance computing, the larger the
bandwidth and smaller the latency, the better.

Supercomputers and compute clusters primarily tend to
use one of two high-performance network interconnects,
being Infiniband[1], [2] from Mellanox and Aries[3], suc-
cessor of Gemini[4], [5], from Cray. Commodity clusters
also require high-performance networks, although Infiniband
may be excessive for their computational needs, and so they
may opt for RDMA over Converged Ethernet (RoCE)[6],
which is common in big data centers. The high-performance
interconnects require their own unique design and imple-
mentation that minimizes latency, maximizes bandwidth, and
ensures reliability of data sent between PEs on the net-

work. These interconnects implement Remote Direct Memory
Access (RDMA) which allows for accessing memory on a
remote PE directly through the Network Interface Controller
(NIC) without the intervention of the CPU, and/or even
the GPU. RDMA allows for the the high-bandwidth and
low-latency remote memory operations, both incoming and
outgoing, to not saturate the CPU, freeing it up to perform
more computations. RDMA for GPUs, such as NVidia’s
GPUDirect, allows for not just host-to-remote-device, but
even device-to-remote-device transfers to perform without
any unnecessary copying to and from the CPU, where
normally transferring device-to-device would require device-
to-host, host-to-host, and then a host-to-device. As well,
RDMA can be used to atomically update remote memory
such that it appears to happen all-at-once or not-at-all, which
opens up many potential applications.

In section 2, the properties of a high-performance network
are explored in detail, and in section 3, the design and
implementation of Infiniband is examined, while in section 4,
the design and implementation of Gemini and it’s successor
Aries are looked at in detail. In section 5, performance
benchmark results from the Ohio State University (OSU)
benchmarks are analyzed between a Cray-XC50 and Infini-
band compute cluster, and in section 6, we take a look at the
near future of high-performance computing, courteousy of
Steve Scott, CTO of Cray Inc., a Hewlett Packard Enterprise
company. Finally, in section 7, we have our conclusion.

II. PROPERTIES OF HIGH-PERFORMANCE NETWORKS

There are many characteristics and properties that make
up networks suitable for high-performance computing. The
structure of the network, that is it’s topology, as well as the
properties relating to fault tolerance and reliability, and the
types of supported communication between PEs in the same
network, are all important. A supercomputer or compute
cluster lacking in any of these will be lacking as a whole,
as each individual part plays a role in extracting as much
performance possible from the underlying hardware.

A. Network Topology

The topology of a network describes the overall makeup
and layout of switches, nodes, and links, and the ways
they are connected. This layout is crucial for maximizing
bandwidth, minimizing latency, ensuring reliability, and en-
abling fault tolerance in a network. There are many types
of topological structures in a network, but only the most
commonly used in the top supercomputers and compute



Compute Nodes

Switch
0

Switch
1

Switch
2

Switch
3

Switch
4

Switch
5

Switch
6

Switch
7

Switch
8

Switch
9

Switch
10

Switch
11

Switch
12

Switch
13

Switch
14

Switch
15

Switch
16

Switch
17

Switch
18

Switch
19

Switch
20

Switch
21

Switch
22

Switch
23

Switch
24

Switch
25

Switch
26

Switch
27

Switch
28

Switch
29

Switch
30

Switch
31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

Fig. 1. Fat Tree Network Topology

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

1

Fig. 2. 2D Torus Network Topology

clusters will be considered, and all else are outside the scope
of this work.

The Fat Tree is a tree data structure where branches are
larger, or "fatter", the farther up the tree they are. The
’thickness’ of the branch is an analog for the amount of
bandwidth available to that node; the fatter the branches,
the larger the bandwidth. The fat tree, in the context of
networking, have all non-leaf nodes in the tree as switches,
with leaf nodes being PEs, as demonstrated in figure 1.[7]
The Fat Tree is extremely cost effective, as adding a new
PE to the network can be as simple as adding a logarithmic
number of switches in the worst case. Communication from
one PE to another is handled by single source shortest path
(SSSP) routing, which sends packets up and down the tree
from the source PE to the target PE.

The Torus topology, with a 2D Torus network shown in

Group 1

Group 0 Group 2

1

Fig. 3. Dragonfly Network Topology

Figure 2[7], can be generalized to N dimensions, where each
the PEs are placed on a coordinate system. For example, in
a 3D Torus network topology, each PE can connect to 6
different PEs in the ±x direction, ±y or in the ±z direction.
The Torus offers a lot of diversity in routing, as there are a
wide variety of ways that you can send data from a source PE
to a target PE, and hence increased bandwidth, but comes at
the downside of a higher cost and much more difficult setup.

The Dragonfly topology is a hybrid, in that PEs are
grouped together, where at least one PE in a group is linked
to some other PE in some other group. The topology used
inside of the group is implementation dependent, but usually
is the Fat Tree topology or a Torus or Mesh topology is used,
as shown in Figure 3.

B. Fault Tolerance and Reliability

In a network, reliability is an important feature for ensur-
ing consistency, and when done well, can serve to extract
even greater performance. A packet in an unreliable network
may be lost, or have to be retransmitted at the cost of
additional time, or at absolute worst, could result in the
acceptance of corrupted data that throws the application
in jeopardy. In a strive to balance both reliability and
performance, each high-performance network must make
some rather unique design decisions and trade-offs that may
be unique to how they are handled in your run-of-the-mill
network. One way that packets are protected is via a Cyclic
Redundancy Check (CRC), which is adds a fixed-width
checksum to the original payload, where the checksum is
calculated in a way that is sensitive to the position and value
of each individual bit. The usage of Error Correcting Codes
(ECC) is also used in the link itself to add an additional layer
of reliability and recoverability on an error.

When a PE goes down in a network, network traffic must
be routed around it, as it may no longer be able to properly
receive, send, or even forward packets that route through



Atomic Operation Gemini uGNI RoCE Infiniband
Add (Integer) 64 32,64 N/A N/A

Add (Float) N/A 32 N/A N/A
Fetch-Add 64 32,64 64 64

And 64 32,64 N/A N/A
Fetch-And 64 32,64 64 64

Or 64 32,64 N/A N/A
Fetch-Or 64 32,64 64 64

Min (Integer) 64 32,64 N/A N/A
Min (Float) N/A 32 N/A N/A

Max (Integer) 64 32,64 N/A N/A
Max (Float) N/A 32 N/A N/A

TABLE I
ATOMIC MEMORY OPERATORS

it. Most networks have what is known as adaptive routing,
where the route a packet travels is computed on-the-fly and
takes into account cases where you have PE-failure in a
network. The ability to route around a down PE is generally
up to the topology of the network; a network without multiple
paths may not be able to tolerate even a single PE failure,
while a more diverse network may be able to handle a rather
large number before the network goes down. While single-
source shortest path (SSSP) may be used to optimize these
routes from a source PE to a target PE, it must be able to
keep track of what PE is and is not responding. This is known
as fault tolerance and is crucial for any network, given that
the probability of PE failure increases as you add more PEs
to the network.

C. Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a form of
remote memory access that enables one PE to access, that
is to read or write, to memory on another PE without the
intervention of the CPU. The alternative to RDMA is remote
memory access via active messages[8], which are essentially
messages that are sent to a handler running on the CPU of the
receiving PE, which is used by approaches such as Active
Messages over UDP (AMUDP)[9]. The usage of the CPU
has two inherent problems: it deprives the PE of valuable
computational resources, and it increases overall latency of
the operation by the time taken for the CPU to handle
the active message. On the other hand, RDMA is handled
directly by the NIC, which eliminates not only the issue of
resources, but by handling the direct memory access (DMA)
as soon as the request arrives, it offers a significant reduction
in overall latency.

RDMA is commonly used in the partitioned global ad-
dress space (PGAS), a distributed memory model where
the memory of all PEs make up one whole address space,
with the exception that the address space is owned by,
or partitioned to, each individual PE. Addressing schemes
typically feature a tuple of virtual addresses and some
identifier for the PE, where RDMA requests are sent directly
to the virtual address on the target PE. RDMA requests in
the PGAS model are referred to as PUT and GET, which are
the remote memory analog of a store and load instruction
respectively. RDMA is not limited to PUTs and GETs, but

Fig. 4. Infiniband Subnet

Fig. 5. Infiniband Queue Pair

can allow for RDMA atomic operations as well, where
atomics, such as compare-and-swap and fetch-and-add are
handled directly by the NIC. The author has empirically
utilized RDMA atomics to implement scalable distributed
non-blocking data structures, and can personally attest to
their usefulness. Finally, you have RDMA to and from
devices, and even between devices, such as the case of
NVidia’s GPUDirect, which enables host-to-remote-device,
device-to-remote-host, and device-to-remote-device memory
transfers over the network.

III. INFINIBAND

Infiniband, unlike Cray, was originally targeted towards
smaller compute clusters and data centers, and is designed to
be as cost-effective as possible, while being able to scale up
to larger compute-clusters. Where unlike Cray’s specialized
and custom hardware, Infiniband was designed to work on
as many systems as desired. To allow this, it focused on
parameterization, allowing multiple minimum transfer unit
(MTU) sizes, and allowing even major features to be optional,
in a strive to ensure that the widest range of configurations
are supported. For small clusters, there is "Profile A", while
for larger clusters there is "Profile B". Unique to Infiniband is
its verbs, which is an abstract representation of functionality
available on the underlying system. These verbs are unlikely



to be used by most applications, and is instead an abstraction
layer used behind-the-scenes by the OS or libraries and APIs.

Infiniband was also created to circumvent the bottleneck
in conventional I/O that relied on serial busses, which, while
simple, stifle overall bandwidth in a system. Bus-based I/O
technology does not scale with the number of devices, nor
with the clockspeed of the bus itself, as it pays the penalty
of arbitration along the shared bus by each device. As well,
busses are primarily used for memory-mapped I/O (MMIO),
and generally are interfaced through processor loads and
stores to the memory-mapped addressing. While store oper-
ation allow reordering around high-latency operations, loads
do not, and hence become a severe bottleneck if heavily used,
and that on as much as 30% of processor execution time
can be spent waiting on I/O loads. Busses also are not very
reliable, as a single-device failure can cripple the entire bus,
and figuring out which device has failed can be very time-
consuming. This bottleneck is non-trivial, as more and more
applications are becoming I/O bound, where, for example,
data mining techniques require scanning terabytes of at a
time, and other applications such as streaming audio and
video demand more and more out of the I/O infrastructure.
Infiniband is built around replacing bus-based I/O with point-
to-point I/O, which provides fault tolerance and scalability,
and takes it a step further by modeling all MMIO commands
and data transfers between hosts and devices, such as from
CPU and GPU, as packets; that is, I/O is treated the same
as communication between two hosts or PEs, and by doing
so it increases overall bandwidth and reduces latency.

Infiniband’s is primarily built around the subnet, where
each subnet can be joined by a router to create larger
Infiniband networks. A subnet is made up of end nodes,
switches, links, and a subnet manager, where end nodes,
such as PEs and devices, send messages over links to other
end nodes, where these messages routed by switches, where
the subnet manager defines the routing tables used. A figure
of a single Infiniband subnet can be seen in Figure 4[2].
Switches are programmed with forwarding information based
on the routing table, where the routing tables may be
linear, specifying an output port for each possible destination
address, or randomly initialized as pairs of destinations and
output ports. Packet sizes are bound by the MTU, and can be
256 bytes, 1KB, 2KB, or 4KBs in size. Infiniband provides
several types of communication services between end nodes:
Reliable Connection (RC) and Unreliable Connection (UC)
which is similar to TCP/IP, Reliable Datagram (RD) and
Unreliable Datagram (UD) which is similar to UDP, and an
Ethernet compatibility mode that uses UDP that allows non-
Infiniband transport layers to traverse an Infiniband network.
In the case of reliable transport, packets are guaranteed
to arrive in order, checked for correctness, with receipt of
acknowledgement, barring catastrophic failure. In the case
of unreliable transport, each packet contains two separate
CRCs, one covering that that cannot change, called the Con-
stant CRC and one for data that must be recomputed for data
that changes when it leaves the Infiniband network, called
the V-CRC. As an optimization, all transport is callable and

Fig. 6. SeaStar and Gemini ASIC

handled from user-mode, meaning no overhead is required
to copy data into a buffer to send. RC, UC, and RD classes
support RDMA, and even support RDMA on atomics, but is
restricted to fetch-and-add and compare-and-swap on 64-bit
data.

Channel Adapters, the interface between an end node and a
link, communicate using work queues of three types: Send,
Receive, and Completion. A Send and Receive Queue are
always used as a Queue Pairs (QP), where all messages pass
through, as shown in Figure 5. Work generated by some
Infiniband verb is placed on a send or receive queue, and
when consumed and processed, the completion queue is up-
dated to indicate that the unit of work has finished. Infiniband
verbs can send and receive a message and perform RDMA
operations which may also specify scatter/gather operations.
Memory regions provide a mapping required to perform
RDMA using virtual addresses, and memory windows are
more fine-grained and lower-overhead constraints on the
addressable portion of virtual memory, dictating what can
be accessed at the granularity of a byte. Memory windows
are registered through Infiniband verbs.

Infiniband provides Automatic Path Migration that is able
bypass a large class of failures by providing each QP with
two independent paths to the destination, where traffic flows
naturally across the first path, and only if an error is detected
will it switch to the second path. The other end point is also
notified of this error and switches re-routes it traffic through
the alternative path, and it remains on this alternate path until
the original path is repaired. Infiniband also provides Send
Queue Drain, where a QP will receive packets but will not
accept any new requests to send data and instead drains its
current send queue of all its packets. When both end point
have drained their send queues, then the network is quiescent,
meaning no data is traversing across the network, allowing
for intervention and repair before the QPs are restarted again.
Infiniband clusters routinely use the Fat Tree topology, but
recently are using the Dragonfly topology.

IV. ARIES

Cray’s Aries interconnect is best described as a direct
improvement on the Gemini network interconnect. The Gem-
ini application-specific integrated-circuit (ASIC) provides
not one, but two NICs, and a 48-port router. Each ASIC
connects two PEs in a 3D-Torus network, but with a slight
variation: instead of having a single switch per PE, such
as it was in Cray’s SeaStar ASIC[10], it instead connects
two PEs together, such as displayed in Figure 6[5], both



Fig. 7. Aries Collective Engine

eliminating majority of the communication between both
PEs and enabling the traffic to and from both PEs to be
distributed across the ten links both of the PEs are connected
to, not including the internal link connecting both PEs,
rather than just six each, allowing for load-balancing on
a packet-by-packet basis. For reliability, packet CRCs are
checked by each device with automatic link-level retry-on-
error, and ECC to protect major memories and data paths
within the device. Packet-by-packet adaptive routing is used
to distributed traffic over links with a lighter workload, which
due to the number of directions that traffic can travel along,
it ensures multiple paths are available, optimizing potential
bandwidth, and better yet, providing fault tolerance in the
event of a PE or link failure.

In Gemini, packets have a triple that makes up the network
address, which is composed of the identifier of the PE, a
memory domain handle (MDH) associated with a memory
segment registered at the remote PE, and an offset into the
aforementioned memory segment, making up 58 bits, en-
abling global access to memory anywhere on a PE. The Fast
Memory Access (FMA) engine handles network transactions,
which is an abstraction for PUTs, GETs, and atomic memory
operations (AMOs), an abstraction for RDMA atomics. FMA
translates processor stores into fully qualified network re-
quests and provides low latency. Writes to an FMA descriptor
associated with an FMA window determines the remote PE
and remote virtual address associated with the base of the
window, whereby a write of up to 64-bytes to the put window
generates a remote put, and storing a 8-byte control word to
the get window generates a get of up to 64-bytes or a fetching
AMO, such as a fetch-and-add RDMA atomic. Based on
how the FMA descriptor is written to, a scattered write
can be performed, and FMA can support both source-side
and destination-side synchronization events, which is used to
poll the completion of some network transaction. The Block
Transfer Engine (BTE) handles asynchronous transfers be-
tween local and remote memory, but unlike the FMA, which
is intended for many small transfers, the BTE is intended
for fewer larger ones. A Completion Queue (CQ) is used
as a lightweight event notification mechanism, which can be
polled on to be notified of the completion of a FMA or BTE
network request. AMOs supports a much wider and richer
range of RDMA atomics compared to Infiniband, as shown
in Table I, which provides an almost one-to-one translation of
processor atomics to RDMA atomics. Indeed, an AMO cache
is even maintained, which reduces the needs for reads of local

memory when multiple processes, remote or local, access
the same atomic variable, where writes to local memory,
including from incoming RDMA atomics, update the actual
cache first and then actual memory lazily. The AMO cache
provides a great speedup for RDMA operations, but come
with a significant penalty in that all accesses to memory
updated by RDMA atomics must go through RDMA atomics
due to the lack of coherency, which comes with significant
overhead, in which the author measured to be about one to
two orders of magnitude in certain applications.

Gemini provides a 16-bit packet CRC, which protects up
to 64-bytes of data and the associated header, and major
memories are protected using ECC. Gemini links use a
sliding window protocol, where the receiving the link checks
the CRC as a packet arrives, where an error is returned if it is
incorrect, causing the sending link to retransmit on receipt
of the error. The CRC is also checked as a packet leaves
each PE, and again as it transitions from the router to the
NIC. Completion events include details of the status of each
transaction, which allows the software to recover from errors.
In the event of link failure, adaptive routing will maneuver
around it, and in the event of the loss of connectivity between
two PEs, the network quiesces, halting all flow through the
network, computes new routing tables, and then re-enables
the network.

Aries, unlike Gemini, uses four NICs, where a single
switch handles connectivity to four PEs, which is exactly
double what Gemini provided. Where Gemini was used in the
Cray-XT series, Aries is used in the newer Cray-XC series,
and uses the Dragonfly topology rather than the 3D-Torus
that the Gemini had. Often, the bijection bandwidth, which is
measured as the worst-case bandwidth achieved by dividing
a system in two, with all PEs in each half communicating
with a peer in the other half, is compared to the injection
bandwidth to measure the ability of an HPC network. In the
3D-Torus topology used in Cray XE6 systems, there is five
times as much routing bandwidth as injection bandwidth, but
performance degrades when packets take an average of more
than five hops, and the all-to-all bandwidth falls as the system
size increases. Aries also adds a new Collective Engine (CE),
which provides hardware support for reduction and barrier
operations, and is optimized for latency sensitive, single-
word operations such as 8-byte integers. The CE supports
reduction trees as shown in Figure 7[3] that ensure scalability
which is created either during job initialization or potentially
later on-demand. Each PE joins a reduction operation, which
offloads the work to the NIC, supplying its contribution and
passing partial results up the tree towards the root, which then
the final result is scattered back down the tree and written
to each of the participating PEs, generating a completion
event for each PE. Unfortunately, Aries has not brought any
support for NVidia’s GPUDirect, causing it to fall out of
favor for GPU-heavy workloads such as deep learning.

V. PERFORMANCE

The performance of both Infiniband and Aries can only
truly be explained by analyzing actual data, and so the



Fig. 8. Latency of RDMA Atomics

Fig. 9. Point-to-Point Latency

Fig. 10. Point-to-Point Unidirectional Bandwidth

Fig. 11. Point-to-Point Bidirectional Bandwidth

results of running microbenchmarks provided by Ohio State
University (OSU), which tests point-to-point, all-to-all col-
lective, and one-sided communication in a network. The
results for Aries was obtained on a Cray-XC50 supercom-
puter with Intel Broadwell 44-core PEs using CrayMPI and
CraySHMEM, and the results for Infiniband was obtained
on an Infiniband cluster with Intel Xeon 20-core PEs using
OpenMPI and Sandia-OpenSHMEM, both networks capping
out at 10GB/s of bandwidth. Each test was run with only
two PE, the minimum required, selected by Torque and
Slurm respectively, which may not entirely account for the
distance between each node. Of the microbenchmarks avail-
able, only the point-to-point latency (Figure 9), unidirectional
(Figure 10) and bidirectional bandwidth (Figure 11), and
OpenSHMEM RDMA atomics (Figure 8) are provided.

Point-to-Point latency is tested by pairing both PEs and
having them initiate blocking MPI_Send and MPI_Recv in
a ping-pong fashion. In terms of point-to-point latency, for
smaller messages up to 64 bytes, both Infiniband and Aries
are about equal, until it exceeds the maximum size for
a packet’s payload, where the latency jumps as much as
1.5x. Infiniband, from this point, consistently has 1.5x more
latency than Aries for the remainder of the benchmark. Point-
to-Point bandwidth is tested where, in the unidirectional
benchmark, one PE sends enough data to fill the receiver’s
window, and then waits a reply from the receiver, where
in the bidrectional benchmark, both PEs both send data
to fill the other PEs window, and sends a reply, using
the non-blocking MPI_ISend and MPI_IRecv for both mi-
crobenchmarks. For unidirectional bandwidth, Infiniband has
the advantage for small to medium sized messages, but likely
due to Aries BTE being built for asynchronous large transfers
rather than synchronous, this may be an optimization of
Infiniband, but Aries does seem to come out on top at the
end, hitting the ceiling on its bandwidth while Infiniband
hits a bottleneck that isn’t the maximum transfer rate itself.
In the bidirectional case, Aries is a clear winner in terms
of both stability and speed, as can be observed by the
identical performance Aries gets, while Infiniband drops by



almost two orders of magnitude.1 RDMA atomics is tested
by paring both PEs and having one PE initiate OpenSHMEM
RDMA atomic operations on another and collect the average
latency. While Infiniband only supports Fetch-And-Add and
Compare-And-Swap, the implementation of OpenSHMEM
is free to implement the rest of the operations with either of
the two avaiable RDMA atomics or as active messages. The
only RDMA atomic operation that Infiniband outperforms
Aries is on the 64-bit add and increment, although it is not
clear as to why.

VI. FUTURE OF NETWORKS IN HIGH-PERFORMANCE
COMPUTING

In an interview[11] with Steve Scott2, Chief Technology
Officer (CTO) of Cray Inc., a Hewlett Packard Enterprise
company, has led to some information and details surfacing
on Cray’s Shasta machines, the Slingshot interconnect[12],
and Rosetta ASIC. Steve Scott, who also happened to be
instrumental in the development of the SeaStar interconnect,
which came before Gemini, is taking another hands-on
approach to the development of the brand new interconnect
by Cray. Not only will the interconnect come with native
support for Ethernet so that it can be used in data centers, but
it provides its own state-of-the-art protocol suitable for HPC.
Slingshot is to provide adaptive routing, congestion control,
and other features necessary for HPC networks. Its design
has been motivated by increasingly heterogeneous workloads
that are common in data centers, simulations, data analytics,
and machine learning, and is built to handle all of these
simultaneously.

Shasta is to handle a broad range of processor types, node
sizes, and even be power-efficient with its own direct liquid
cooling, while also allowing the Slingshot interconnect to
be used in the standard 19-inch racks where air-cooling is
used. Gone are the days of it being all-or-nothing, where
you had to own a Cray-XC to use Aries or Cray-XT to use
Gemini, and welcome are the days of flexibility. Shasta is
designed to allow the connection of storage devices to the
Slingshot interconnect, similar to how Infiniband does, but
in a way that saves cost and provides a lot better small I/O
performance. The highly configurable interconnect can even
vary the injection bandwidth into nodes and the amount of
global bandwidth in the system, and is designed to scale to
"exascale and beyond". Slingshot is an Ethernet ASIC, with
all of the qualities of an HPC network: "smaller packets,
smaller packet headers, reliable hardware delivery across the
link, credit-based flow control..." The switch ASIC is called
Rosetta, which implements 64 ports, with an individual
throughput of 200 GB/s, and an aggregate throughput of
12.8TB/sec. Slingshot uses a Dragonfly topology, but has
only a single dimension within each group, resulting in at
most three hops between any two endpoints in the network,
at 300 nanoseconds per hop, with 100 nanoseconds being

1This is likely a quirk of the individual network itself, and may not be
present in more recent and advanced Infiniband compute clusters.

2Steve Scott happens to be the brother of the author’s advisor, Michael
L. Scott.

used for forward error correction. This high-radix and low-
diameter network is truly designed as an exascale intercon-
nect.

Congestion control has been built around dramatically
reducing queueing latency in the network, and providing
performance isolation between workloads, which it does
so by bookkeeping what is transferred between every set
of endpoints in the network, allowing it to quickly detect
congestion and backpressure the offending source in a way
that does not impede the traffic for the victim. In what Steve
Scott refers to as tail latency, which is the latency of the
slowest packet, these tail latencies can be flattened to become
more uniform with the implemented congestion control. Tail
latencies, as Steve Scott has stated, can get exceptionally bad
in data centers where they drop packets out of fear of (fat-)
tree saturation, and also in applications with a load imbalance
with regard to network traffic, and so Slingshot can be very
useful for aforementioned applications.

VII. CONCLUSION

The properties of a high-performance network have been
summarized, and it comes down to their ability to network
topology, which by itself controls latency and bandwidth,
the fault tolerance and reliability, which is crucial for per-
formance as much as correctness, and then communication
primitives such as RDMA. Three different network topolo-
gies, the Fat Tree, Torus, and Dragonfly have been surmised
in brief, as well as some information and commonly used
methods for providing reliability and details as to why
topology determines the fault tolerance of a network. RDMA,
in terms of the PGAS primitives of PUT and GET have been
defined, as well as their atomic counterparts, and finally a
note on RDMA concerning GPUs were given. The design
and implementation of Infiniband was discussed, as well as
Gemini, predecessor Aries, and then Aries itself was looked
at in detail. Performance obtained on the OSU benchmarks
from a Cray-XC50 supercomputer and Infiniband compute
cluster were gathered and analyzed, and then details on some
recent insight from the CTO of Cray Inc., a Hewlett Packard
Enterprise company, Steve Scott, was examined.

REFERENCES

[1] G. F. Pfister, “An introduction to the infiniband architecture,” High
Performance Mass Storage and Parallel I/O, vol. 42, pp. 617–632,
2001.

[2] “Introduction to InfiniBandTM — Mel-
lanox Technologies.” [Online]. Available:
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf

[3] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray xc series
network,” Cray Inc., White Paper WP-Aries01-1112, 2012.

[4] R. D. Chamberlain, M. A. Franklin, and Ch’ng Shi Baw, “Gemini:
an optical interconnection network for parallel processing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 10,
pp. 1038–1055, Oct. 2002.

[5] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini System In-
terconnect,” in 2010 18th IEEE Symposium on High Performance
Interconnects, Aug. 2010, pp. 83–87.



[6] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and
M. Lipshteyn, “RDMA over Commodity Ethernet at Scale,”
in Proceedings of the 2016 ACM SIGCOMM Conference, ser.
SIGCOMM ’16. New York, NY, USA: ACM, 2016, pp.
202–215, event-place: Florianopolis, Brazil. [Online]. Available:
http://doi.acm.org/10.1145/2934872.2934908

[7] “Github repository: Hewlettpackard/genz_tools_network_monitoring.”
[Online]. Available: https://github.com/HewlettPackard/genz_tools_network_monitoring

[8] T. Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active Messages:
A Mechanism for Integrated Communication and Computation,” in
[1992] Proceedings the 19th Annual International Symposium on
Computer Architecture, May 1992, pp. 256–266, iSSN: null.

[9] D. Bonachea and D. Hettena, “AMUDP: Active Messages Over UDP,”
p. 21.

[10] R. Brightwell, K. Pedretti, K. Underwood, and T. Hudson, “SeaStar
Interconnect: Balanced Bandwidth for Scalable Performance,” IEEE
Micro, vol. 26, no. 3, pp. 41–57, May 2006.

[11] T. P. Morgan, “Cray Slingshots Back Into HPC In-
terconnects With Shasta Systems,” Oct. 2018. [Online].
Available: https://www.nextplatform.com/2018/10/30/cray-slingshots-
back-into-hpc-interconnects-with-shasta-systems/

[12] “Slingshot: The Interconnect for the Exascale Era,” p. 6.


